access icon free Impartation of hydroxyapatite formation ability to ultra-high molecular weight polyethylene by deposition of apatite nuclei

The authors aimed to impart hydroxyapatite formation ability to ultra-high molecular weight polyethylene (UHMWPE) by deposition of apatite nuclei (ApN) by the following two methods. The first method was electrophoretic deposition (EPD). A porous UHMWPE was placed between electrodes in the ApN-dispersed ethanol and constant voltage was applied. By this treatment, the ApN were migrated from anode-side surface to the cathode one through the pores by an electric field in the pores of the UHMWPE and deposited inside the pores. The second method was direct precipitation (DP) of the ApN. A porous UHMWPE was soaked in a simulated body fluid (1.0SBF) with higher pH than the physiological one and subsequently, its temperature was raised. By this treatment, the ApN were precipitated in the pores of the UHMWPE directly in the reaction solution. For both methods, the ApN-deposited UHMWPE showed HAp formation ability not only on the top surface but also inside the pores near the surface of the porous UHMWPE in 1.0SBF although the adhesion strength of thus-formed HAp layer was higher in the case of the EPD in comparison with the DP, oxygen plasma treatment before the DP enabled to achieve a similar level of the HAp layer adhesion to the EPD.

Inspec keywords: precipitation; phosphorus compounds; adhesion; polymers; adhesives; electrophoretic coatings; pH; plasma materials processing; electrochemical electrodes; calcium compounds; porous materials

Other keywords: electric field; HAp layer adhesion; anodes; ApN-deposited UHMWPE; hydroxyapatite formation ability; ultrahigh molecular weight polyethylene; reaction solution; apatite nuclei; direct precipitation; ApN-dispersed ethanol; cathodes; EPD; Ca10(PO4)6(OH)2; oxygen plasma treatment; adhesion strength; porous UHMWPE; HAp formation ability; electrophoretic deposition; pH value

Subjects: Adhesion and related phenomena; Electrochemistry and electrophoresis; Structure of powders and porous materials; Plasma applications in manufacturing and materials processing; Solubility, segregation, and mixing; Deposition from liquid phases (melts and solutions)

References

    1. 1)
      • 20. Yabutsuka, T., Mizutani, H., Takai, S., et al: ‘Fabrication of bioactive Co-Cr-Mo-W alloy by using doubled sandblasting process and apatite nuclei treatment’, Trans. Mat. Res. Soc. Japan, 2018, 43, (3), pp. 143147.
    2. 2)
      • 19. Yabutsuka, T., Karashima, R., Takai, S., et al: ‘Effect of doubled sandblasting process and basic simulated body fluid treatment on fabrication of bioactive stainless steels’, Materials (Basel), 2018, 11, (8), p. 1334.
    3. 3)
      • 34. Ohta, M., Tanaka, I., Nakahira, A.: ‘Synthesis of amorphous calcium phosphate by Sol-gel method and examination of its thermal behavior’, J. Jpn. Soc. Powder Metallurgy, 2005, 52, (5), pp. 364367.
    4. 4)
      • 21. Yabutsuka, T., Fukushima, K., Hiruta, T., et al: ‘Effect of pores formation process and oxygen plasma treatment to hydroxyapatite formation on bioactive PEEK prepared by incorporation of precursor of apatite’, Mater. Sci. Eng. C: Mater. Biol. Appl., 2017, 81, pp. 349358.
    5. 5)
      • 31. Kim, H.-M., Miyaji, F., Kokubo, T., et al: ‘Bonding strength of bonelike apatite layer to Ti metal substrate’, J. Biomed. Mater. Res., 1997, 38, (2), pp. 121127.
    6. 6)
      • 7. Kokubo, T., Takadama, H.: ‘How useful is SBF in predicting in vivo bone bioactivity?’, Biomaterials, 2006, 27, (15), pp. 29072915.
    7. 7)
      • 29. Yamaguchi, S., Yabutsuka, T., Hibino, M., et al: ‘Generation of hydroxyapatite patterns by electrophoretic deposition’, J. Mater. Sci.: Mater. Med., 2008, 19, (3), pp. 14191429.
    8. 8)
      • 23. Masamoto, K., Fujibayashi, S., Yabutsuka, T., et al: ‘In vivo and in vitro bioactivity of a ‘precursor of apatite’ treatment on polyetheretherketone’, Acta Biomater., 2019, 91, pp. 4859.
    9. 9)
      • 14. Huang, J., di Silvio, L., Wang, M., et al: ‘Evaluation of in vitro bioactivity and biocompatibility of bioglass-reinforced polyethylene composite’, J. Mater. Sci.: Mater. Med., 1997, 8, (12), pp. 809813.
    10. 10)
      • 17. Yao, T., Hibino, M., Yabutsuka, T.: ‘Method of producing bioactive complex material’, U.S. Patent, 8512732, Japanese Patent, 2013, 5252399, 2013.
    11. 11)
      • 27. Ding, X., Yamashita, K., Umegaki, T.: ‘Coating of calcium phosphate on alumina ceramics by electrophoretic deposition’, J. Ceram. Soc. Japan, 1995, 103, (8), pp. 867869.
    12. 12)
      • 30. Lacefield, W.R.: ‘Hydroxyapatite coatings’, in Hench, L.L. (Ed.): ‘An Introduction to bioceramics’ (Imperial College Press, UK, 2013, 2nd edn.), pp. 331347.
    13. 13)
      • 16. Tanahashi, M., Yao, T., Kokubo, T., et al: ‘Apatite coating on organic polymers by a biomimetic process’, J. Am. Ceram. Soc., 1994, 77, (11), pp. 28052808.
    14. 14)
      • 32. Miyazaki, T., Kim, H.-M., Kokubo, T., et al: ‘Enhancement of bonding strength by graded structure at interface between apatite layer and bioactive tantalum metal’, J. Mater. Sci. Mater. Med., 2002, 13, (7), pp. 651655.
    15. 15)
      • 24. Abdeltawab, A.A., Shoeib, M.A., Mohamed, S.G.: ‘Electrophoretic deposition of hydroxyapatite coatings on titanium from dimethylformamide suspensions’, Surf. Coat. Technol., 2011, 206, (1), pp. 4350.
    16. 16)
      • 26. Javadi, M., Javadpour, S., Bahrololoom, M.E., et al: ‘Electrophoretic deposition of natural hydroxyapatite on medical grade 316L stainless steel’, Mater. Sci. Eng. C, 2008, 28, (8), pp. 15091515.
    17. 17)
      • 8. 23317, I.S.O.: ‘Implants for surgery – in vitro evaluation for apatite-forming ability of implant materials’, 2014.
    18. 18)
      • 10. Furukawa, T., Matsusue, Y., Yasunaga, T., et al: ‘Histomorphometric study on high-strength hydroxyapatite/poly(L-lactide) composite rods for internal fixation of bone fractures’, J. Biomed. Mater. Res., 2000, 50, (3), pp. 410419.
    19. 19)
      • 1. Hench, L.L.: ‘Bioceramics: from concept to clinic’, J. Am. Ceram. Soc., 1991, 74, (7), pp. 14871510.
    20. 20)
      • 25. Kwok, C.T., Wong, P.K., Cheng, F.T., et al: ‘Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition’, Appl. Surf. Sci., 2009, 255, (13–14), pp. 67366744.
    21. 21)
      • 11. Kurtz, S.M.: ‘UHMWPE biomaterials handbook’ (William Andrew, USA, 2005, 3rd edn.).
    22. 22)
      • 3. Kokubo, T., Shigematsu, M.Y., Nagashima, Y., et al: ‘Apatite- and wollastonite-containg glass-ceramics for prosthetic application’, Bull. Inst. Chem. Res. Kyoto Univ., 1982, 60, (3–4), pp. 260268.
    23. 23)
      • 22. Yabutsuka, T., Fukushima, K., Hiruta, T., et al: ‘Fabrication of bioactive fiber-reinforced PEEK and MXD6 by incorporation of precursor of apatite’, J. Biomed. Mater. Res. B: Appl. Biomater., 2018, 106, (6), pp. 22542265.
    24. 24)
      • 6. Kokubo, T., Kushitani, H., Sakka, S., et al: ‘Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W’, J. Biomed. Mater. Res., 1990, 24, (6), pp. 721734.
    25. 25)
      • 15. Hashimoto, M., Takadama, H., Mizuno, M., et al: ‘Mechanical properties and apatite forming ability of TiO2 nanoparticles/high density polyethylene composite: effect of filler content’, J. Mater. Sci.: Mater. Med., 2007, 18, (4), pp. 661668.
    26. 26)
      • 4. Neo, M., Kotani, S., Fujita, Y., et al: ‘Differences in ceramic-bone interface between surface-active ceramics and resorbable ceramics: a study by scanning and transmission electron microscopy’, J. Biomed. Mater. Res., 1992, 26, (2), pp. 255267.
    27. 27)
      • 35. Umegaki, T., Hisano, Y., Yamashita, K., et al: ‘Preparation of apatite film by electrophoresis’, Gypsum Lime, 1998, 218, pp. 2428.
    28. 28)
      • 18. Yabutsuka, T., Mizuno, H., Takai, S.: ‘Fabrication of bioactive titanium and its alloys by combination of doubled sandblasting process and alkaline simulated body fluid treatment’, J. Ceram. Soc. Japan, 2019, 127, (10), pp. 669677.
    29. 29)
      • 2. Jarcho, M., Kay, J.F., Gumaer, K.I., et al: ‘Tissue, cellular and subcellular events at a bone-ceramic hydroxylapatite interface’, J. Bioeng., 1977, 1, (2), pp. 7982.
    30. 30)
      • 12. Bonfield, W., Grynpas, M.D., Tully, A.E., et al: ‘Hydroxyapatite reinforced polyethylene – a mechanically compatible implant material for bone replacement’, Biomaterials, 1981, 2, (3), pp. 185186.
    31. 31)
      • 36. Xu, J.Z., Ren, Y., Yin, H.M., et al: ‘Bone-like polymeric composites with a combination of bioactive glass and hydroxyapatite: simultaneous enhancement of mechanical performance and bioactivity’, ACS Biomater. Sci. Eng., 2018, 4, pp. 44344442.
    32. 32)
      • 33. Juhasz, J.A., Best, S.M., Kawashita, M., et al: ‘Bonding strength of the apatite layer formed on glass-ceramic apatite-wollastonite-polyethylene composites’, J. Biomed. Mater. Res., Part A, 2003, 67, (3), pp. 952959.
    33. 33)
      • 38. Jaberzadeh, M., Emadi, R.: ‘Fabrication and characterization of UHMWPE reinforced by forsterite nano crystallites as an implant biocomposite’, Ceram. Silik., 2016, 60, pp. 156161.
    34. 34)
      • 39. Van Vrekhem, S., Vloebergh, K., Asadian, M., et al: ‘Improving the surface properties of an UHMWPE shoulder implant with an atmospheric pressure plasma jet’, Sci. Rep., 2018, 8, p.4720.
    35. 35)
      • 5. Neo, M., Nakamura, T., Ohtsuki, C., et al: ‘Apatite formation on three kinds of bioactive material at an early stage in vivo: a comparative study by transmission electron microscopy’, J. Biomed. Mater. Res., 1996, 27, (8), pp. 9991006.
    36. 36)
      • 28. Yamaguchi, S., Yabutsuka, T., Hibino, M., et al: ‘Development of novel bioactive composites by electrophoretic deposition’, Mater. Sci. Eng. C, 2009, 29, pp. 15841588.
    37. 37)
      • 13. Juhasz, J.A., Best, S.M., Bonfield, W., et al: ‘Apatite-forming ability of glass-ceramic apatite-wollastonite-polyethylene composites: effect of filler content’, J. Mater. Sci.: Mater. Med., 2003, 14, (6), pp. 489495.
    38. 38)
      • 9. Ridzwan, M.I.Z., Shuib, S., Hassan, A.Y., et al: ‘Problem of stress shielding and improvement to the hip implant designs’, J. Med. Sci., 2007, 7, (3), pp. 460467.
    39. 39)
      • 37. Balakrishnan, H., Husin, M.R., Wahit, M.U., et al: ‘Maleated high density polyethylene compatibilized high density polyethylene/hydroxyapatite composites for biomedical applications: properties and characterization’, Polym.-Plast. Technol. Eng., 2013, 52, pp. 774782.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2020.0050
Loading

Related content

content/journals/10.1049/iet-nbt.2020.0050
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading