access icon free PANI/TiO2 nanocomposite-based chemiresistive gas sensor for the detection of E. Coli bacteria

In the modern pace of the world, food safety is a major concern. In this work, a simple chemiresistive type gas sensor was fabricated to detect Escherichia Coli (E. coli) bacteria. Polyaniline (PANI) films were deposited on the indium tin oxide substrate by an electrochemical deposition method. TiO2 nanoparticles were synthesised by facile hydrothermal method. PANI films were modified using hydrothermally prepared TiO2 nanoparticles by a spin coating method. X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Fourier transform infrared (FTIR) and ultravioletvisible spectrophotometer techniques were used to characterise the PANI/TiO2 nanocomposites. The peaks obtained in the XRD pattern confirmed the anatase phase of TiO2 nanoparticles. FESEM analysis showed the nanofibrous structure of the nanocomposite. The FTIR characteristic peaks confirmed the formation of the nanocomposite. The electrical resistance of the sensors was evaluated as a function of the bacterial concentration. The PT2 (TiO2 coated 5 times on PANI) in comparison with PT1 (TiO2 coated 3 times on PANI) exhibited good sensitivity to the gas molecules at room temperature. The p-n junction at PANI/TiO2 interface improved the physical adsorption of gas molecules. Since no specific antibodies or receptors are used, the sensor has the potential for adaptation to real-life applications. Thus low cost, real-time, portable, reusable and sensitive bacteria sensors were fabricated and tested.

Inspec keywords: electrical resistivity; adsorption; wide band gap semiconductors; nanofibres; biological techniques; nanobiotechnology; nanofabrication; Fourier transform infrared spectra; conducting polymers; nanoparticles; X-ray diffraction; visible spectra; microorganisms; nanosensors; spin coating; ultraviolet spectra; polymer films; gas sensors; field emission scanning electron microscopy; titanium compounds; nanocomposites; electrodeposition

Other keywords: TiO2; TiO2 nanoparticles; spin coating method; Fourier transform infrared spectra; PANI films; ITO; portable bacteria sensors; electrochemical deposition method; sensitive bacteria sensors; field emission scanning electron microscopy; FTIR spectra; bacterial concentration; temperature 293.0 K to 298.0 K; p-n junction; gas molecules; anatase phase; polyaniline films; X-ray diffraction; ultraviolet-visible spectra; reusable bacteria sensors; Escherichia Coli bacteria detection; PANI-TiO2 nanocomposite-based chemiresistive gas sensor; indium tin oxide substrate; nanofibrous structure; electrical resistance; facile hydrothermal method; XRD; physical adsorption; FESEM; simple chemiresistive type gas sensor

Subjects: Infrared and Raman spectra in composite materials; Sorption and accommodation coefficients (surface chemistry); Biophysical instrumentation and techniques; Adsorption and desorption kinetics; evaporation and condensation; Composite materials (engineering materials science); Chemical sensors; Visible and ultraviolet spectra of composite materials; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Biological engineering and techniques; Chemical sensors; Electrochemistry and electrophoresis; Deposition from liquid phases; Deposition from liquid phases (melts and solutions); Optical properties of composite materials (thin films, low-dimensional and nanoscale structures); Microsensors and nanosensors; Nanofabrication using thin film deposition methods; Thin film growth, structure, and epitaxy

References

    1. 1)
      • 1. Newell, D., Koopmans, M., Verhoef, L., et al: ‘Food-borne diseases – the challenges of 20 years ago still persist while new ones continue to emerge’, Int. J. Food Microbiol., 2010, 139, pp. S3S15.
    2. 2)
      • 6. Wang, G., Morrin, A., Li, M., et al: ‘Nanomaterial-doped conducting polymers for electrochemical sensors and biosensors’, J. Mater. Chem. B, 2018, 6, (25), pp. 41734190.
    3. 3)
      • 14. Huang, Y., Hsu, H., Hsu, C.: ‘Development of electrochemical method to detect bacterial count, Listeria monocytogenes, and somatic cell count in raw milk’, J. Taiwan Inst. Chem. Eng., 2016, 62, pp. 3944.
    4. 4)
      • 8. Lusvardi, G., Barani, C., Giubertoni, F., et al: ‘Synthesis and characterization of TiO2 nanoparticles for the reduction of water pollutants’, Materials, 2017, 10, (10), p. 1208.
    5. 5)
      • 19. Basu, P.K., Indukuri, D., Keshavan, S., et al: ‘Graphene based E. coli sensor on flexible acetate sheet’, Sens. Actuators B, Chem., 2014, 190, pp. 342347.
    6. 6)
      • 29. Nimkar, S., Agrawal, S., Kondawar, S.: ‘Fabrication of electrospun nanofibers of titanium dioxide intercalated polyaniline nanocomposites for CO2 gas sensor’, Procedia Mater. Sci., 2015, 10, pp. 572579.
    7. 7)
      • 3. Koh, J.K., Kim, J., Kim, B., et al: ‘Highly efficient, iodine-free dye-sensitized solar cells with solid-state synthesis of conducting polymers’, Adv. Mater., 2011, 23, (14), pp. 16411646.
    8. 8)
      • 28. Bairi, V.G., Bourdo, S.E., Sacre, N., et al: ‘Ammonia gas sensing behavior of tanninsulfonic acid doped polyaniline-TiO2 composite’, Sensors, 2015, 15, pp. 2641526429.
    9. 9)
      • 20. Chaitra, V., Pradeep, N., Nirmala Grace, A., et al: ‘Electrodeposition and characterization of polyaniline films for the detection of staphylococcus aureus bacteria in food products’, Sens. Lett., 2017, 15, (1), pp. 6570.
    10. 10)
      • 13. Barth Reller, L., Weinstein, M.P., Petti, C.A.: ‘Detection and identification of microorganisms by gene amplification and sequencing’, Clin. Infect. Dis., 2007, 44, (8), pp. 11081114.
    11. 11)
      • 22. Gao, L., Yin, C., Luo, Y., et al: ‘Facile synthesis of the composites of polyaniline and TiO2 nanoparticles using self-assembly method and their application in gas sensing’, Nanomaterials, 2019, 9, (4), p. 493.
    12. 12)
      • 30. Huyen, D., Tung, N., Thien, N., et al: ‘Effect of TiO2 on the gas sensing features of TiO2/PANi nanocomposites’, Sensors, 2011, 11, (2), pp. 19241931.
    13. 13)
      • 9. Wiesner, K., Jaremek, M., Pohle, R., et al: ‘Monitoring of bacterial growth and rapid evaluation of antibiotic susceptibility by headspace gas analysis’, Procedia Eng., 2014, 87, pp. 332335.
    14. 14)
      • 25. Zhu, H., Peng, S., Jiang, W.: ‘Electrochemical properties of PANI as single electrode of electrochemical capacitors in acid electrolytes’, Sci. World J., 2013, 2013, pp. 18.
    15. 15)
      • 2. Gustafsson, G., Cao, Y., Treacy, G.M., et al: ‘Flexible light-emitting diodes made from soluble conducting polymers’, Nature, 1992, 357, pp. 477479.
    16. 16)
      • 24. Dey, A., De, S., De, A., et al: ‘Characterization and dielectric properties of polyaniline-TiO2 nanocomposites’, Nanotechnology, 2004, 15, (9), pp. 12771283.
    17. 17)
      • 17. Uria, N., Abramova, N., Bratov, A., et al: ‘Miniaturized metal oxide pH sensors for bacteria detection’, Talanta, 2016, 147, pp. 364369.
    18. 18)
      • 16. Cao, B., Li, R., Xiong, S., et al: ‘Use of a DNA microarray for detection and identification of bacterial pathogens associated with fishery products’, Appl. Environ. Microbiol., 2011, 77, (23), pp. 82198225.
    19. 19)
      • 18. Löffler, S., Antypas, H., Choong, F., et al: ‘Conjugated oligo- and polymers for bacterial sensing’, Front. Chem., 2019, 7, p. 265.
    20. 20)
      • 10. Waters, L., Jacobson, S., Kroutchinina, N., et al: ‘Device for cell lysis, multiplex PCR amplification, and electrophoretic sizing’, Anal. Chem., 1998, 70, (1), pp. 158162.
    21. 21)
      • 15. Sauer, S., Freiwald, A., Maier, T., et al: ‘Classification and identification of bacteria by mass spectrometry and computational analysis’, PLoS ONE, 2008, 3, (7), p. e2843.
    22. 22)
      • 7. Snook, G., Kao, P., Best, A.: ‘Conducting-polymer-based supercapacitor devices and electrodes’, J. Power Sources, 2011, 196, (1), pp. 112.
    23. 23)
      • 32. Tai, H., Jiang, Y., Xie, G., et al: ‘Fabrication and gas sensitivity of polyaniline-titanium dioxide nanocomposite thin film’, Sens. Actuators B, Chem., 2007, 125, (2), pp. 644650.
    24. 24)
      • 12. Zhang, D., Bi, H., Liu, B., et al: ‘Detection of pathogenic microorganisms by microfluidics based analytical methods’, Anal. Chem., 2018, 90, (9), pp. 55125520.
    25. 25)
      • 4. Gerard, M., Chaubey, A., Malhotra, B.: ‘Application of conducting polymers to biosensors’, Biosens. Bioelectron., 2002, 17, (5), pp. 345359.
    26. 26)
      • 26. Husin, M., Arsad, A., Alothman, O.: ‘Synthesis of nano-polyaniline using different ultrasonic wave’, Appl. Mech. Mater., 2014, 695, pp. 207210.
    27. 27)
      • 31. Bairi, V., Warford, B., Bourdo, S., et al: ‘Synthesis and characterization of tanninsulfonic acid doped polyaniline-metal oxide nanocomposites’, J. Appl. Polym. Sci., 2012, 124, (4), pp. 33203328.
    28. 28)
      • 23. Ganesan, R., Gedanken, A.: ‘Organic-inorganic hybrid materials based on polyaniline/TiO2 nanocomposites for ascorbic acid fuel cell systems’, Nanotechnology, 2008, 19, p. 435709.
    29. 29)
      • 5. Ferrandon, M., Wang, X., Jeremy Kropf, A., et al: ‘Stability of iron species in heat-treated polyaniline–iron–carbon polymer electrolyte fuel cell cathode catalysts’, Electrochim. Acta, 2013, 110, pp. 282291.
    30. 30)
      • 34. Li, X., Wang, G., Li, X., et al: ‘Surface properties of polyaniline/nano-TiO2 composites’, Appl. Surf. Sci., 2004, 229, (1), pp. 395401.
    31. 31)
      • 27. Mikhaylov, S., Ogurtsov, N., Noskov, Y., et al: ‘Ammonia/amine electronic gas sensors based on hybrid polyaniline-TiO2 nanocomposites. The effects of titania and the surface active doping acid’, RSC Adv., 2015, 5, (26), pp. 2021820226.
    32. 32)
      • 21. Jumat, N.A., Wai, P.S., Juan, J.C., et al: ‘Synthesis of polyaniline-TiO2 nanocomposites and their application in photocatalytic degradation’, Polym. Polym. Compos., 2017, 25, (7), pp. 507514.
    33. 33)
      • 33. Li, J., Zhu, L., Wu, Y., et al: ‘Hybrid composites of conductive polyaniline and nanocrystalline titanium oxide prepared via self-assembling and graft polymerization’, Polymer, 2006, 47, pp. 73617367.
    34. 34)
      • 11. Sohn, M., Himmelsbach, D., Barton, F., et al: ‘Fluorescence spectroscopy for rapid detection and classification of bacterial pathogens’, Appl. Spectrosc., 2009, 63, (11), pp. 12511255.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2020.0046
Loading

Related content

content/journals/10.1049/iet-nbt.2020.0046
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading