Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Isolation, process optimisation and characterisation of the protein from the de-oiled cake flour of Madhuca latifolia

This work reports the isolation of the protein from the flour of an underutilised agro waste, a de-oiled cake of Madhuca latifolia using the bis (2-ethylehexyl) sodium sulfosuccinate salt reverse micelle and the characterisation of the protein through various techniques. The experimental conditions for the extraction were optimised using Box–Behnken design. The highest yield of the protein was achieved when the extraction parameters, i.e. KCl concentration, KCl amount, and pH of the medium, were 0.5 M, 1.25 ml, and 9.02, respectively. The experimental yield (75.56%) obtained under the optimised conditions matched extremely well with the predicted yield (75.19%). The analysis of the biochemical composition envisaged the occurrence of 2S albumin, 7S globulin, and 11S globulin as the major components in the protein. The X-ray diffraction pattern supported the β-sheets structure of the protein. The imaging of the protein through a scanning electron microscope revealed the shape and surface of the protein to be spherical and smooth, respectively. Thus, the protein isolate of the de-oiled cake flour of Madhuca latifolia could be utilised towards food product development and relevant fields.

References

    1. 1)
      • 25. Choi, J.H., Cho, M.: ‘Ion aggregation in high salt solutions. VI. Spectral graph analysis of chaotropic ion aggregates’, J. Chem. Phys., 2016, 145, pp. 174501.
    2. 2)
      • 8. Ramachandran, S., Singh, S.K., Larroche, C., et al: ‘Oil cakes and their biotechnological applications – a review’, Biores. Technol., 2007, 98, pp. 20002009.
    3. 3)
      • 9. Gupta, A., Chaudhary, R., Sharma, S.: ‘Potential applications of mahua (Madhuca indica) biomass’, Waste Biomass Valori., 2012, 3, pp. 175189.
    4. 4)
      • 40. Maharana, S., Misra, P.K.: ‘Probing the Gelatin–Alkylammonium salt mixed assemblies through surface tensiometry and fluorimetry’, J. Physical Chem. B, 2018b, 122, pp. 51615172.
    5. 5)
      • 50. Paradkar, V.M., Dordick, J.S.: ‘Mechanism of extraction of chymotrypsin into isooctane at very low concentrations of aerosol OT in the absence of reversed micelles’, Biotechnol. Bioeng., 1994, 43, pp. 529540.
    6. 6)
      • 49. Misra, P.K., Meher, J., Maharana, S.: ‘Investigation on the gelatin-surfactant interaction and physiochemical characteristics of the mixture’, J. Mole. Liq., 2016, 224, pp. 900908.
    7. 7)
      • 15. Chen, X., Tsujii, K.: ‘Synthetic myelin figures immobilized in polymer gels’, Soft Mat., 2007, 3, pp. 852856.
    8. 8)
      • 28. Box, G.E., Behnken, D.W.: ‘Some new three level designs for the study of quantitative variables’, Technometrics., 1960, 2, pp. 455475.
    9. 9)
      • 37. Kieliszek, M., Błażejak, S.: ‘Selenium: significance, and outlook for supplementation’, Nutrition, 2013, 29, pp. 713718.
    10. 10)
      • 62. Gorinstein, S., Pawelzik, E., Delgado-Licon, E., et al: ‘Use of scanning electron microscopy to indicate the similarities and differences in pseudocereal and cereal proteins’, Int. J. Food Sci. Technol., 2004, 39, pp. 183189.
    11. 11)
      • 10. Singh, A., Singh, I.S.: ‘Chemical evaluation of mahua (Madhuca indica) seed’, Food Chem., 1991, 40, pp. 221228.
    12. 12)
      • 35. Laemmli, U.K.: ‘Cleavage of structural proteins during the assembly of the head of bacteriophage T4’, Nature, 1970, 227, p. 680.
    13. 13)
      • 58. Radovic, R.S., Maksimovic, R.V., Brkljacic, M.J., et al: ‘2S albumin from buckwheat (Fagopyrum esculentum Moench) seeds’, J. Agri. Food Chem., 1999, 47, pp. 14671470.
    14. 14)
      • 34. Lowry, O.H., Rosebrough, N.J., Farr, A.L., et al: ‘Protein measurement with the Folin phenol reagent’, J. Biol. Chem., 1951, 193, pp. 265275.
    15. 15)
      • 32. Bera, M.B., Panesar, P.S., Panesar, R., et al: ‘Application of reverse micelle extraction process for amylase recovery using response surface methodology’, Bioprocess Biosys. Eng., 2008, 31, pp. 379384.
    16. 16)
      • 13. Suna, P., Misra, P.K.: ‘Effect of ionic and nonionic surfactants on the phase behaviour and physicochemical characteristics of pseudoternary systems involving polyoxyethylene (20) sorbitan monooleate’, Surf. Int., 2018, 10, pp. 1926.
    17. 17)
      • 20. Liu, J.G., Xing, J.M., Shen, R., et al: ‘Reverse micelles extraction of nattokinase from fermentation broth’, Biochem. Eng. J., 2004, 21, pp. 273278.
    18. 18)
      • 56. Gatehouse, J.A., Lycett, G.W., Croy, R.R.D., et al: ‘The post-translational proteolysis of the subunits of vicilin from pea (Pisum sativum L.)’, Biochem. J., 1982, 207, pp. 629632.
    19. 19)
      • 61. Mao, X., Hua, Y.: ‘Composition, structure and functional properties of protein concentrates and isolates produced from walnut (Juglans regia L.)’, Int. J. Mole. Sci., 2012, 13, pp. 15611581.
    20. 20)
      • 4. Nayak, B., Misra, P.K.: ‘Recognition of the surface characteristics and electrical properties of a nanocrystalline hydroxyapatite synthesized from Pila globosa shells for versatile applications’, Mat. Chem. Phy., 2019, 230, pp. 187196.
    21. 21)
      • 54. Kshirsagar, H.H., Fajer, P., Sharma, G.M., et al: ‘Biochemical and spectroscopic characterization of almond and cashew nut seed 11S legumins, amandin and anacardein’, J. Agri. Food Chem., 2010, 59, pp. 386393.
    22. 22)
      • 7. Das, D., Panigrahi, S., Senapati, P., et al: ‘Effect of organized assemblies, part 5: development of a natural dispersant for concentrated coal-water slurry from Acacia concina plant’, Energy Fuels., 2009, 23, pp. 32173226.
    23. 23)
      • 6. Nayak, B., Misra, P.K.: ‘Exploration of the structural and dielectric characteristics of a potent hydroxyapatite coated gallium bioceramics for the forthcoming biomedical and orthopedic applications’, Mater. Chem. Phys., 2020, 239, p. 121967.
    24. 24)
      • 19. Zhao, X., Wei, Z., Du, F., et al: ‘Effects of surfactant and salt species in reverse micellar forward extraction efficiency of isoflavones with enriched protein from soy flour’, App. Biochem. Biotechnol., 2010, 162, pp. 20872097.
    25. 25)
      • 30. Kirsten, W.J., Hesselius, G.U.: ‘Rapid, automatic, high capacity Dumas determination of nitrogen’, Microchem. J., 1983, 28, pp. 529547.
    26. 26)
      • 47. Siow, H.L., Gan, C.Y.: ‘Functional protein from cumin seed (Cuminum cyminum): optimization and characterization studies’, Food Hydrocoll., 2014, 41, pp. 178187.
    27. 27)
      • 14. Mishra, H.P, Jyotish, N., Panigrahi, S., et al: ‘Organization of amphiphiles, part IX:’Effect of molecular structure of cosurfactants and oils on phase behaviour of tween-80:alkanol-oil-water systems’, J. Dis. Sci. Tech., 2009, 30, pp. 564574.
    28. 28)
      • 11. Zhao, X., Ao, Q., Chen, F., et al: ‘Effect of reverse micelle on conformation of soy globulins: a Raman study’, Food Chem., 2009, 116, pp. 176182.
    29. 29)
      • 12. Chen, J., Chen, F., Wang, X., et al: ‘The forward and backward transport processes in the AOT/hexane reversed micellar extraction of soybean protein’, J. Food Sci. Technol., 2014, 51, pp. 28512856.
    30. 30)
      • 1. Panda, L., Rath, S.S., Rao, D.S., et al: ‘Thorough understanding of the kinetics and mechanism of heavy metal adsorption onto a pyrophyllite mine waste based geopolymer’, J. Mol. Liq., 2018, 263, pp. 428441.
    31. 31)
      • 45. Sun, X.H., Zhu, K.X., Zhou, H.M.: ‘Protein extraction from defatted wheat germ by reverse micelles: optimization of the forward extraction’, J. Cereal Sci., 2008, 48, pp. 829835.
    32. 32)
      • 18. Zhao, X., Chen, F., Chen, J., et al: ‘Effects of AOT reverse micelle on properties of soy globulins’, Food Chem., 2008, 111, pp. 599605.
    33. 33)
      • 27. Ferreira, S.C., Bruns, R.E., Ferreira, H.S., et al: ‘Box-Behnken design: an alternative for the optimization of analytical methods’, Ana. Chimica Acta, 2007, 597, pp. 179186.
    34. 34)
      • 52. Nayak, P.K., Dash, U., Rayaguru, K., et al: ‘Influence of elephant apple powder as an adsorbent in the regeneration of fried soybean oil: process optimization studies’, J. Food Proce. Eng., 2018, 41, p. 12637.
    35. 35)
      • 24. Hebbar, H.U., Sumana, B., Raghavarao, K.S.M.S.: ‘Use of reverse micellar systems for the extraction and purification of bromelain from pineapple wastes’, Bioresource Technol., 2008, 99, pp. 48964902.
    36. 36)
      • 57. Thanh, V.H., Shibasaki, K.: ‘Major proteins of soybean seeds. A straightforward fractionation and their characterization’, J. Agr. Food Chem., 1976, 24, pp. 11171121.
    37. 37)
      • 31. He, S., Shi, J., Walid, E., et al: ‘Reverse micellar extraction of lectin from black turtle bean (Phaseolus vulgaris): optimisation of extraction conditions by response surface methodology’, Food Chem., 2015, 166, pp. 93100.
    38. 38)
      • 17. Guo, Z., Chen, F., Yang, H., et al: ‘Kinetics of protein extraction in reverse micelle’, Int. J. Food Proper., 2015, 18, pp. 17071718.
    39. 39)
      • 44. Glasstone, S.: ‘An introduction to electrochemistry’ (Read Books Ltd., 2013), vol. 4, pp. 1557.
    40. 40)
      • 29. ‘Association of Official Analytical Chemists. Official Methods of Analysis: Changes in Official Methods of Analysis Made at the Annual Meeting’. Supplement. Association of Official Analytical Chemists; 1990.
    41. 41)
      • 59. Bendit, E.G.: ‘A quantitative x-ray diffraction study of the alpha-beta transformation in wool keratin’, Textile Res. J., 1960, 30, pp. 547555.
    42. 42)
      • 16. Naoe, K., Yoshimoto, S., Naito, N., et al: ‘Preparation of protein nanoparticles using AOT reverse micelles’, Biochem. Eng. J., 2011, 55, pp. 140143.
    43. 43)
      • 48. Noh, K.H., Imm, J.Y.: ‘One-step separation of lysozyme by reverse micelles formed by the cationic surfactant, cetyldimethyl ammonium bromide’, Food Chem., 2005, 93, pp. 95101.
    44. 44)
      • 23. Dong, J., Cai, J., Guo, X., et al: ‘Effect of the spacer of Gemini surfactants on reverse micellar extraction of bovine serum albumin’, Soft Mat., 2013, 9, pp. 1138311391.
    45. 45)
      • 42. Nayak, B., Samant, A., Patel, R., et al: ‘Comprehensive understanding of the kinetics and mechanism of fluoride removal over a potent nanocrystalline hydroxyapatite surface’, ACS Omega, 2017, 2, pp. 81188128.
    46. 46)
      • 33. Guan, X., Yao, H.: ‘Optimization of Viscozyme L-assisted extraction of oat bran protein using response surface methodology’, Food Chem., 2008, 106, pp. 345351.
    47. 47)
      • 3. Panda, L., Rath Jena, S., Rath, S.S., et al: ‘Heavy metals removal from water by adsorption using a low-cost geopolymer’, Env. Sci. Poll. Res., 2020, 27, pp. 2428424298, available at https://doi.org/10.1007/s11356-020-08482-0.
    48. 48)
      • 39. Misra, P.K., Dash, U., Maharana, S.: ‘Investigation of bovine serum albumin-surfactant aggregation and its physicochemical characteristics’, Colloids Surf. A., 2015, 483, pp. 3644.
    49. 49)
      • 2. Biswal, A.K., Misra, P.K.: ‘Biosynthesis and characterization of silver nanoparticles for prospective application in food packaging and biomedical applications’, Mat. Chem. Phy., 2020, 250, p. 123014.
    50. 50)
      • 41. Samant, A., Nayak, B., Misra, P.K.: ‘Kinetics and mechanistic interpretation of fluoride removal by nanocrystalline hydroxyapatite derived from Limacine artica shells’, J. Environ. Chem. Eng., 2017, 5, pp. 54295438.
    51. 51)
      • 26. Sansanwal, P.K.: ‘Effect of co-solutes on the physico-chemical properties of surfactant solutions’, J. Sci. Indus. Res., 2006, 65, pp. 5764.
    52. 52)
      • 21. Brandani, V., Di Giacomo, G., Spera, L.: ‘Recovery of α-amylase extracted by reverse micelles’, Process Biochem., 1996, 31, pp. 125128.
    53. 53)
      • 43. Zhao, X., Zhang, X., Liu, H., et al: ‘Functional, nutritional and flavor characteristic of soybean proteins obtained through reverse micelles’, Food Hydrocoll., 2018, 74, pp. 358366.
    54. 54)
      • 55. Tandang-Silvas, M.R.G., Fukuda, T., Fukuda, C., et al: ‘Conservation and divergence on plant seed 11S globulins based on crystal structures’, Biochim. Biophys. Acta, Proteins Proteomics., 2010, 1804, pp. 14321442.
    55. 55)
      • 36. Santos, O.V., Corrêa, N.C., Carvalho, JrR.N., et al: ‘Comparative parameters of the nutritional contribution and functional claims of Brazil nut kernels, oil and defatted cake’, Food Res. Int., 2013, 51, pp. 841847.
    56. 56)
      • 22. Joshi, N., Rawat, K., Bohidar, H.B.: ‘Influence of structure, charge, and concentration on the pectin–calcium–surfactant complexes’, J. Phys. Chem. B., 2016, 120, pp. 42494257.
    57. 57)
      • 46. Sun, X.H., Zhu, K.X., Zhou, H.M.: ‘Optimization of a novel backward extraction of defatted wheat germ protein from reverse micelles’, Innov. Food Sci. Emerg., Technol., 2009, 10, pp. 328333.
    58. 58)
      • 5. Kumar, K.S., Ganesan, K., Selvaraj, K., et al: ‘Studies on the functional properties of protein concentrate of Kappaphycus alvarezii (Doty) Doty – an edible seaweed’, Food Chem., 2014, 153, pp. 353360.
    59. 59)
    60. 60)
      • 51. Li, Y., Liu, Z., Zhao, H., et al: ‘Statistical optimization of xylanase production from new isolated Penicillium oxalicum ZH-30 in submerged fermentation’, Biochem. Eng. J., 2007, 34, pp. 8286.
    61. 61)
      • 53. Bacon, J.R., Lambert, N., Phalp, M., et al: ‘Resolution of pea legumin subunits by high-performance liquid chromatography’, Ana. Biochem., 1987, 160, pp. 202210.
    62. 62)
      • 60. Zhao, X., Zhu, H., Zhang, B., et al: ‘XRD, SEM, and XPS analysis of soybean protein powders obtained through extraction involving reverse micelles’, J. Ame. Oil Chem. Soc., 2015, 92, pp. 975983.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2020.0029
Loading

Related content

content/journals/10.1049/iet-nbt.2020.0029
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address