access icon free Chitosan nanoparticles loaded with aspirin and 5-fluororacil enable synergistic antitumour activity through the modulation of NF-κB/COX-2 signalling pathway

Based on the enhancement of synergistic antitumour activity to treat cancer and the correlation between inflammation and carcinogenesis, the authors designed chitosan nanoparticles for co-delivery of 5-fluororacil (5-Fu: an as anti-cancer drug) and aspirin (a non-steroidal anti-inflammatory drug) and induced synergistic antitumour activity through the modulation of the nuclear factor kappa B (NF-κB)/cyclooxygenase-2 (COX-2) signalling pathways. The results showed that aspirin at non-cytotoxic concentrations synergistically sensitised hepatocellular carcinoma cells to 5-Fu in vitro. It demonstrated that aspirin inhibited NF-κB activation and suppressed NF-κB regulated COX-2 expression and prostaglandin E2 (PGE2) synthesis. Furthermore, the proposed results clearly indicated that the combination of 5-Fu and aspirin by chitosan nanoparticles enhanced the intracellular concentration of drugs and exerted synergistic growth inhibition and apoptosis induction on hepatocellular carcinoma cells by suppressing NF-κB activation and inhibition of expression of COX-2.

Inspec keywords: cancer; cellular biophysics; tumours; enzymes; proteins; drug delivery systems; nanoparticles; molecular biophysics; biomedical materials; drugs; nanomedicine

Other keywords: anticancer drug; noncytotoxic concentrations; intracellular concentration; nuclear factor kappa B; aspirin; 5-fluororacil; NF-κB activation; NF-κB regulated COX-2 expression; hepatocellular carcinoma cells; cyclooxygenase-2; synergistic antitumour activity; apoptosis induction; synergistic growth inhibition; nonsteroidal antiinflammatory drug; PGE2; chitosan nanoparticles; NF-κB-cyclooxygenase-2 signalling pathways; prostaglandin E2 synthesis

Subjects: Cellular biophysics; Biomolecular interactions, charge transfer complexes; Patient care and treatment; Nanotechnology applications in biomedicine; Biomedical materials

References

    1. 1)
      • 20. Rizzo, M.T.: ‘Cyclooxygenase-2 in oncogenesis’, Clin. Chim. Acta., 2011, 412, (9–10), pp. 671687.
    2. 2)
      • 9. Chen, J., Jin, R., Zhao, J., et al: ‘Potential molecular, cellular and microenvironmental mechanism of sorafenib resistance in hepatocellular carcinoma’, Cancer. Lett., 2015, 367, (1), pp. 111.
    3. 3)
      • 14. Wilson, K.T., Fu, S., Ramanujam, K.S., et al: ‘Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in barrett's esophagus and associated adenocarcinomas’, Cancer Res., 1998, 58, (14), pp. 29292934.
    4. 4)
      • 32. Wu, X.L., Yang, Z.W., He, L, et al: ‘RRS1 silencing suppresses colorectal cancer cell proliferation and tumorigenesis by inhibiting G2/M progression and angiogenesis’, Oncotarget, 2017, 8, (47), pp. 8296882980.
    5. 5)
      • 5. Lopez, P.M., Villanueva, A., Llovet, J.M.: ‘Systematic review: evidence-based management of hepatocellular carcinoma--an updated analysis of randomized controlled trials’, Aliment. Pharmacol. Ther., 2006, 23, (11), pp. 15351547.
    6. 6)
      • 11. Gomes, M., Teixeira, A.L., Coelho, A., et al: ‘The role of inflammation in lung cancer’, Adv. Exp. Med. Biol., 2014, 816, pp. 123.
    7. 7)
      • 35. Cuzick, J., Otto, F., Baron, J.A., et al: ‘Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement’, Lancet Oncol., 2009, 10, (5), pp. 501507.
    8. 8)
      • 23. Takada, Y., Bhardwaj, A., Potdar, P., et al: ‘Nonsteroidal anti-inflammatory agents differ in their ability to suppress NF-kappaB activation, inhibition of expression of cyclooxygenase-2 and cyclin D1, and abrogation of tumor cell proliferation’, Oncogene, 2004, 23, (57), pp. 92479258.
    9. 9)
      • 6. Hsu, Y.C., Ho, H.J., Wu, M.S., et al: ‘Postoperative peg-interferon plus ribavirin is associated with reduced recurrence of hepatitis C virus-related hepatocellular carcinoma’, Hepatology, 2013, 58, (1), pp. 150157.
    10. 10)
      • 2. Farazi, P.A., DePinho, R.A.: ‘Hepatocellular carcinoma pathogenesis: from genes to environment’, Nat. Rev. Cancer, 2006, 6, pp. 674687.
    11. 11)
      • 12. Liu, Q., Tan, Q., Zheng, Y., et al: ‘Blockade of Fas signaling in breast cancer cells suppresses tumor growth and metastasis via disruption of Fas signaling-initiated cancer-related inflammation’, J. Biol. Chem., 2014, 289, (16), pp. 1152211535.
    12. 12)
      • 28. Ke, F., Zhang, M., Qin, N., et al: ‘Synergistic antioxidant activity and anticancer effect of green tea catechin stabilized on nanoscale cyclodextrin-based metal–organic frameworks’, J. Mater. Sci., 2019, 54, pp. 1042010429.
    13. 13)
      • 21. Dong, X., Li, R., Xiu, P., et al: ‘Meloxicam executes its antitumor effects against hepatocellular carcinoma in COX-2- dependent and -independent pathways’, PLOS One, 2014, 9, (3), p. e92864.
    14. 14)
      • 27. Lin, J., Wu, L., Bai, X., et al: ‘Combination treatment including targeted therapy for advanced hepatocellular carcinoma’, Oncotarget, 2016, 7, (43), pp. 7103671051.
    15. 15)
      • 7. Wu, T.J., Chang, S.S., Li, C.W., et al: ‘Severe hepatitis promotes hepatocellular carcinoma recurrence via NF-κB pathway-mediated epithelial-mesenchymal transition after resection’, Clin. Cancer. Res., 2016, 22, (7), pp. 18001812.
    16. 16)
      • 30. Yu, X., Yang, G., Shi, Y., et al: ‘Intracellular targeted co-delivery of shMDR1 and gefitinib with chitosan nanoparticles for overcoming multidrug resistance’, Int. J. Nanomed., 2015, 10, pp. 70457056.
    17. 17)
      • 24. Yhee, J.Y., Son, S., Lee, H., et al: ‘Nanoparticle-based combination therapy for cancer treatment’, Curr. Pharm. Des., 2015, 21, (22), pp. 31583166.
    18. 18)
      • 17. Larkins, T.L., Nowell, M., Singh, S., et al: ‘Inhibition of cyclooxygenase-2 decreases breast cancer cell motility, invasion and matrix metalloproteinase expression’, BMC Cancer, 2006, 6, p. 181.
    19. 19)
      • 3. Wang, H., Chen, L.: ‘Tumor microenviroment and hepatocellular carcinoma metastasis’, J. Gastroenterol. Hepatol., 2013, 1, (28 Suppl), pp. 4348.
    20. 20)
      • 18. Banu, S.K., Lee, J., Speights, V.O.Jr, et al: ‘Cyclooxygenase-2 regulates survival, migration, and invasion of human endometriotic cells through multiple mechanisms’, Endocrinology, 2008, 149, (3), pp. 11801189.
    21. 21)
      • 22. Jana, N.R.: ‘NSAIDs and apoptosis’, Cell Mol. Life Sci., 2008, 65, (9), pp. 12951301.
    22. 22)
      • 15. Zimmermann, K.C., Sarbia, M., Weber, A.A., et al: ‘Cyclooxygenase-2 expression in human esophageal carcinoma’, Cancer Res., 1999, 59, (1), pp. 198204.
    23. 23)
      • 25. Ge, Y., Ma, Y., Li, L.: ‘The application of prodrug-based nano-drug delivery strategy in cancer combination therapy’, Colloids Surf. B Biointerfaces, 2016, 146, pp. 482489.
    24. 24)
      • 34. Van Dyke, A.L., Cote, M.L., Prysak, G., et al: ‘Regular adult aspirin use decreases the risk of non-small cell lung cancer among women’, Cancer Epidemiol. Biomarkers Prev., 2008, 17, (1), pp. 148157.
    25. 25)
      • 1. Salgia, R., Singal, A.G.: ‘Hepatocellular carcinoma and other liver lesions’, Med. Clin. North Am., 2014, 98, (1), pp. 103118.
    26. 26)
      • 8. Kuczynski, E.A., Lee, C.R., Man, S., et al: ‘Effects of sorafenib dose on acquired reversible resistance and toxicity in hepatocellular carcinoma’, Cancer Res., 2015, 75, (12), pp. 25102519.
    27. 27)
      • 31. Zhao, L., Yang, G., Shi, Y., et al: ‘Co-delivery of Gefitinib and chloroquine by chitosan nanoparticles for overcoming the drug acquired resistance’, J. Nanobiotechnology, 2015, 13, p. 57.
    28. 28)
      • 4. Kerr, S.H., Kerr, D.J.: ‘Novel treatments for hepatocellular cancer’, Cancer Lett., 2009, 286, (1), pp. 114120.
    29. 29)
      • 26. Wang, T., Narayanaswamy, R., Ren, H., et al: ‘Combination therapy targeting both cancer stem-like cells and bulk tumor cells for improved efficacy of breast cancer treatment’, Cancer Biol. Ther., 2016, 17, (6), pp. 698707.
    30. 30)
      • 13. Elinav, E., Nowarski, R., Thaiss, C.A., et al: ‘Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms’, Nat. Rev. Cancer., 2013, 13, (11), pp. 759771.
    31. 31)
      • 10. Zhu, Y.J., Zheng, B., Wang, H.Y., et al: ‘New knowledge of the mechanisms of sorafenib resistance in liver cancer’, Acta. Pharmacol. Sin., 2017, 38, (5), pp. 614622.
    32. 32)
      • 16. Kern, M.A., Schöneweiss, M.M., Sahi, D., et al: ‘Cyclooxygenase-2 inhibitors suppress the growth of human hepatocellular carcinoma implants in nude mice’, Carcinogenesis, 2004, 25, (7), pp. 11931199.
    33. 33)
      • 37. Olejniczak-Kęder, A., Szaryńska, M., Wrońska, A., et al: ‘Effects of 5-FU and anti-EGFR antibody in combination with ASA on the spherical culture system of HCT116 and HT29 colorectal cancer cell lines’, Int. J. Oncol., 2019, 55, (1), pp. 223242.
    34. 34)
      • 33. Moysich, K.B., Menezes, R.J., Ronsani, A., et al: ‘Regular aspirin use and lung cancer risk’, BMC Cancer, 2002, 2, p. 31.
    35. 35)
      • 19. Ali-Fehmi, R., Morris, R.T., Bandyopadhyay, S., et al: ‘Expression of cyclooxygenase-2 in advanced stage ovarian serous carcinoma: correlation with tumor cell proliferation, apoptosis, angiogenesis, and survival’, Am. J. Obstet. Gynecol., 2005, 192, (3), pp. 819825.
    36. 36)
      • 29. Ke, X., Song, X., Qin, N., et al: ‘Rational synthesis of magnetic Fe3O4@MOF nanoparticles for sustained drug delivery’, J. Porous Mater., 2019, 26, pp. 813818.
    37. 37)
      • 36. Fu, J., Xu, Y., Yang, Y., et al: ‘Aspirin suppresses chemoresistance and enhances antitumor activity of 5-Fu in 5-Fu-resistant colorectal cancer by abolishing 5-Fu-induced NF-κB activation’, Sci. Rep., 2019, 9, (1), p. 16937.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2020.0002
Loading

Related content

content/journals/10.1049/iet-nbt.2020.0002
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading