access icon free Salacia mulbarica leaf extract mediated synthesis of silver nanoparticles for antibacterial and ct-DNA damage via releasing of reactive oxygen species

In this examination, we researched the advantages of DNA fragmentation and metallic nanoparticles well-appointed with biomolecules. A novel interpretation of DNA damage by Silver Nano-Clusters (AgNCs) which were developed by the utilization of green synthesis method was demonstrated. The green synthesis of AgNCs was accomplished by utilizing the leaf extract of Salacia mulbarica (SM). The preparation of SM-AgNCs was developed by estimating surface plasmon resonance peak around 449 nm by using a UV–Visible spectrophotometer. The effect of phytochemicals in SM leaf extract on the development of stable SM-AgNCs was confirmed by FTIR spectroscopy. The size of the fabricated SM-AgNCs was estimated by dynamic light scattering and zeta-sizer analysis and the morphology of the SM-AgNCs was examined by transmission electron microscopy. The presence of clusters of Ag particles in the prepared SM-AgNCs was recognized by energy dispersion X-ray analysis. The results show that saponins, phytosterols, and phenolic compounds present in plant extract may play a great part in developing the SM-AgNCs in their specialized particles. The succeeded SM-AgNCs shows incredible anti-bacterial action towards Escherichia coli and Bacillus subtilis. In-light of the antibacterial study, these SM-AgNCs were analyzed with calf thymus-DNA and found significant damage to the strand of thymus-DNA.

Inspec keywords: DNA; X-ray diffraction; ultraviolet spectra; nanoparticles; X-ray chemical analysis; molecular biophysics; silver; nanomedicine; surface plasmon resonance; biomedical materials; Fourier transform infrared spectra; particle size; microorganisms; transmission electron microscopy; visible spectra; nanofabrication; antibacterial activity

Other keywords: saponins; Escherichia coli; Fourier transform infrared spectroscopy; UV-Visible spectrophotometer; transmission electron microscopy; phytosterols; Salacia mulbarica leaf extract; phenolic compounds; reactive oxygen species; stable SM-AgNCs; ct-DNA damage; Zeta-sizer analysis; DNA fragmentation; Bacillus subtilis; Ag; plant extract; silver nanoparticles; metallic nanoparticles; energy dispersive X-ray analysis; dynamic light scattering; silver nanoclusters; surface plasmon resonance

Subjects: Other methods of nanofabrication; Biomedical materials; Molecular biophysics; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Electromagnetic radiation spectrometry (chemical analysis); Nanotechnology applications in biomedicine

References

    1. 1)
      • 8. Espenti, C.S., Krishna Rao, K.S.V., Rao, K.M.: ‘Bio-synthesis and characterization of silver nanoparticles using Terminalia chebula leaf extract and evaluation of its antimicrobial potential’, Mater. Lett., 2016, 174, pp. 129133.
    2. 2)
      • 1. Acosta, J., Arco, J.D., Martinez-Pascual, S., et al: ‘One-pot multi-enzymatic production of purine derivatives with application in pharmaceutical and food industry’, Catalysts, 2018, 8, (5), p. 184.
    3. 3)
      • 26. Cardoso, E., Londero, E., Ferreira, G.K., et al: ‘Gold nanoparticles induce DNA damage in the blood and liver of rats’, J. Nanopart. Res., 2014, 16, p. 2727.
    4. 4)
      • 33. Varadharajaperumal, P., Subramanian, B., Santhanam, A.: ‘Biopolymer mediated nanoparticles synthesized from Adenia hondala for enhanced tamoxifen drug delivery in breast cancer cell line’, Adv. Nat. Sci., Nanosci. Nanotechnol., 2017, 8, p. 035011.
    5. 5)
      • 15. Singh, J., Dutta, T., Kim, K.H.M.: ‘Green synthesis of metals and their oxide nanoparticles: applications for environmental remediation’, J. Nanobiotechnol., 2018, 16, p. 84.
    6. 6)
      • 32. Markiewicz, E., Idowu, O.C.: ‘DNA damage in human skin and the capacities of natural compounds to modulate the bystander signaling’, Open Biol., 2019, 9, p. 190208.
    7. 7)
      • 31. Augspurger, E.E., Rana, M., Yigit, M.V.: ‘Chemical and biological sensing using hybridization chain reaction’, ACS Sens., 2018, 3, (5), pp. 878902.
    8. 8)
      • 22. Mohammadinejad, R., Karimi, S., Iravani, S., et al: ‘Plant-derived nanostructures: types and applications’, Green. Chem., 2016, 18, pp. 2052.
    9. 9)
      • 9. Wang, L., Hu, C., Shao, L.: ‘The antimicrobial activity of nanoparticles: present situation and prospects for the future’, Int. J. Nanomed, 2017, 12, pp. 12271249.
    10. 10)
      • 23. Gopiraman, M., Deng, D., Zhang, K., et al: ‘Utilization of human hair as a synergistic support for Ag, Au, Cu, Ni, and Ru nanoparticles: application in catalysis’, Ind. Eng. Chem. Res., 2017, 56, pp. 19261939.
    11. 11)
      • 16. Ovais, M., Khalil, A.T., Islam, N.U.: ‘Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles’, Appl. Microbiol. Biotechnol., 2018, 102, (16), pp. 67996814.
    12. 12)
      • 3. Espenti, C.S., Krishna Rao, K.S.V., Rao, K.M., et al: ‘A green approach to synthesize controllable silver nanostructures from Limonia acidissima for inactivation of pathogenic bacteria’, Cog. Chem., 2016, 2, (1), p. 1144296.
    13. 13)
      • 2. Krishna Rao, K.S.V., Reddy, P.R.S., Espenti, C.S.: ‘Green synthesis of gold nanoparticles using Prosopis Juliflora leaves extract and evaluation of their anti-bacterial Activity', Ind. J. Adv. Chem. Sci., 2017, 5, (2), pp. 102107.
    14. 14)
      • 28. Perignon, M., Vieux, F., Soler, L.G.: ‘Improving diet sustainability through evolution of food choices: review of epidemiological studies on the environmental impact of diets’, Nutr Rev., 2017, 75, pp. 217.
    15. 15)
      • 5. Birusanti, A.B., Umamahesh, M., Espenti, C.S., et al: ‘Sustainable green synthesis of silver nanoparticles by using Rangoon creeper leaves extract and their spectral analysis and anti-bacterial studies’, IET Nanobiotechnol., 2019, 13, (1), pp. 7176.
    16. 16)
      • 18. Dakshayani, S.S., Marulasiddeshwara, M.B., Kumar, M.N.S., et al: ‘Antimicrobial, anticoagulant and antiplatelet activities of green synthesized silver nanoparticles using Selaginella (sanjeevini) plant extract’, Int. J. Biol. Macromol., 2019, 131, pp. 787797.
    17. 17)
      • 27. Srivastava, C.M., Purwar, R., Gupta, A.P.: ‘Enhanced potential of biomimetic, silver nanoparticles functionalized Antheraea mylitta (tasar) silk fibroin nanofibrous mats for skin tissue engineering’, Int. J. Biol. Macromol., 2019, 130, pp. 437453.
    18. 18)
      • 13. Dhanya, P., Malik, W., Satishchandra, O.: ‘Conversion-type anode materials for alkali-Ion batteries: state of the art and possible research directions’, ACS Omega, 2018, 3, pp. 45914601.
    19. 19)
      • 38. Tang, S., Zheng, J.: ‘Antibacterial activity of silver nanoparticles: structural effects’, Adv. Healthc. Mater., 2018, 7, (13), p. e1701503.
    20. 20)
      • 21. Selvan, D.A., Mahendiran, D., Kumar, R.S., et al: ‘Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: phytochemical, antioxidant and in vitro cytotoxicity studies’, J. Photochem. Photobiol. B, Biol., 2018, 180, pp. 243252.
    21. 21)
      • 34. Zhou, W., Saran, R., Liu, J.: ‘Metal sensing by DNA’, Chem. Rev., 2017, 117, (12), pp. 82728325.
    22. 22)
      • 7. Mahmoodreza, B., Hossein, P.A., Naghizadeh, A., et al: ‘Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity’, Int. J. Biol. Macromol, 2018, 124, pp. 148154.
    23. 23)
      • 36. Li, P., Kenneth Merz, JrM.: ‘Metal Ion modeling using classical mechanics’, Chem. Rev., 2017, 117, pp. 15641686.
    24. 24)
      • 4. Rao, K.M., Espenti, C.S., Krishna Rao, K.S.V.: ‘Biosynthesis of microbial resistance Au-nanoparticles from aqueous extract of Tridax procumbens leaves’, Ind. J. Adv. Chem. Sci., 2017, 5, (1), pp. 2429.
    25. 25)
      • 17. Mallikarjuna, N.N., Iyanna, N., Lalley, J, et al: ‘Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts’, ACS Sust. Chem. Eng., 2014, 2, pp. 17171723.
    26. 26)
      • 25. Sotiropoulos, M., Henthorn, N.T., Warmenhoven, J.W., et al: ‘Modelling direct DNA damage for gold nanoparticle enhanced proton therapy’, Nanoscale, 2017, 9, pp. 1841318422.
    27. 27)
      • 6. Raman, R.P., Parthiban, S., Srinithya, B., et al: ‘Biogenic silver nanoparticles synthesis using the extract of the medicinal plant Clerodendron serratum and its in-vitro antiproliferative activity’, Mater. Lett., 2015, 160, pp. 400403.
    28. 28)
      • 11. Ismail, M., Khan, M.I., Khan, S.B., et al: ‘Green synthesis of plant supported CuAg and CuNi bimetallic nanoparticles in the reduction of nitrophenols and organic dyes for water treatment', J. Mol. Liq., 2018, 260, pp. 7891.
    29. 29)
      • 14. Firdhouse, M.J., Lalitha, P.: ‘Biogenic silver nanoparticles – synthesis, characterization and its potential against cancer inducing bacteria’, J. Mol. Liq., 2016, 222, pp. 10411050.
    30. 30)
      • 20. Javed, M., Tunio, M.T., Rauf, H.A., et al: ‘Addition of pomegranate juice (Punica granatum) in tris-based extender improves post-thaw quality, motion dynamics and in vivo fertility of Nili Ravi buffalo (Bubalus bubalis) bull spermatozoa’, Andrologia, 2019, 51, (8), p. e13322.
    31. 31)
      • 30. Uznanski, P., Zakrzewska, J., Favier, F.: ‘Synthesis and characterization of silver nanoparticles from (bis) alkylamine silver carboxylate precursors’, J. Nanopart. Res., 2017, 19, p. 121.
    32. 32)
      • 24. Kajani, A.A., Zarkesh-Esfahani, S.H., Bordbar, , et al: ‘Anticancer effects of silver nanoparticles encapsulated by Taxus baccata extracts’, J. Mol. Liq., 2016, 223, pp. 549556.
    33. 33)
      • 19. Das, P., Kumar, K., Nambiraj, A., et al: ‘Potential therapeutic activity of Phlogacanthus thyrsiformis Hardow (Mabb) flower extract and its biofabricated silver nanoparticles against chemically induced urolithiasis in male wistar rats’, Int. J. Biol. Macromol., 2017, 103, pp. 621629.
    34. 34)
      • 10. Ouyang, L., Zhong, H., Li, H.W., et al: ‘A recycling hydrogen supply system of NaBH4 based on a Facile regeneration process: A review’, Inorganics, 2018, 6, p. 10.
    35. 35)
      • 39. Dong, H., Lei, J., Ding, L, et al: ‘MicroRNA: function, detection, and bioanalysis’, Chem. Rev., 2013, 113, (8), pp. 62076233.
    36. 36)
      • 40. Vann, K.R., Sedgeman, C.A., Gopas, J., et al: ‘Effects of olive metabolites on DNA cleavage mediated by human type II topoisomerases’, Biochemistry, 2015, 54, (29), pp. 45314541.
    37. 37)
      • 37. Yi, Z., Sun, Z., Chen, , et al: ‘Colloidally stable and functional nanoparticles based on the molecular assembly of green tea polyphenols and keratins for cancer therapy’, J. Mater. Chem. B, 2018, 6, pp. 13731386.
    38. 38)
      • 12. Fathima, J.B., Pugazhendhi, A., Oves, M., et al: ‘Synthesis of eco-friendly copper nanoparticles for augmentation of catalytic degradation of organic dyes’, J. Mol. Liq., 2018, 260, pp. 18.
    39. 39)
      • 29. Williamson, G.: ‘The role of polyphenols in modern nutrition’, Nutr Bull., 2017, 42, (3), pp. 226235.
    40. 40)
      • 41. Ashley, R.E., Osheroff, N.: ‘Natural products as topoisomerase II poisons: effects of thymoquinone on DNA cleavage mediated by human topoisomerase iiα’, Chem. Res. Toxicol., 2014, 27, (5), pp. 787793.
    41. 41)
      • 35. Agnihotri, S., Mukherji, S., Mukherji, S.: ‘Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy’, RSC Adv., 2014, 4, pp. 39743983.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2020.0001
Loading

Related content

content/journals/10.1049/iet-nbt.2020.0001
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading