access icon free Upconversion nanotubes with tunable fluorescence properties based on Gd2O2S:Ln3+ (Ln3+ = Yb3+, Er3+) and derivatives for photodynamic therapy

In this study, Gd2O2S:Ln3+ (Ln3+ = Yb3+, Er3+) upconversion nanotubes (UCNTs) were synthesised by using Gd(OH)3:Ln3+ (Ln3+ = Yb3+, Er3+) nanotubes as the template. The luminescent and biological properties of Gd2O2S:Ln3+ (Ln3+ = Yb3+, Er3+) UCNTs, along with photodynamic therapy (PDT) applications of the Gd2O2S:8%Yb3+,2%Er3+ UCNT–Ce6 (chlorin e6) nanocomposites, were systematically studied. The resultant UCNTs showed excellent biocompatibility with human retinal pigment cells (ARPE-19) even after a prolonged incubation time of 72 h, and could be used as luminescent probes. Microscopic imaging revealed that the UCNTs existed mainly in cytoplasm. PDT studies on the Gd2O2S:8%Yb3+,2%Er3+ UCNT–Ce6 nanocomposites indicate that the growth of the tumour (cell) could be inhibited dramatically when it was injected (incubated) with Gd2O2S:8%Yb3+,2%Er3+ UCNT–Ce6 nanocomposites under the irradiation of 980 nm laser.

Inspec keywords: nanocomposites; fluorescence; nanomedicine; tumours; cellular biophysics; laser beam effects; photodynamic therapy; biomedical optical imaging; eye; gadolinium compounds; nanofabrication; ytterbium; erbium; biomedical materials

Other keywords: human retinal pigment cells; tumour; upconversion nanotubes; Gd2O2S:Yb,Er; biocompatibility; UCNT–Ce6 nanocomposites; biological properties; luminescent properties; microscopic imaging; time 72.0 hour; wavelength 980.0 nm; laser irradiation; PDT studies; tunable fluorescence properties; photodynamic therapy applications

Subjects: Patient diagnostic methods and instrumentation; Radiation therapy; Low-dimensional structures: growth, structure and nonelectronic properties; Cellular biophysics; Nanotechnology applications in biomedicine; Other methods of nanofabrication; Optical and laser radiation (biomedical imaging/measurement); Optical and laser radiation (medical uses); Radiation therapy; Biomedical materials

References

    1. 1)
      • 29. Chang, C.K., Zhang, Q.A., Mao, D.L.: ‘The hydrothermal preparation, crystal structure and photoluminescent properties of GdOOH nanorods’, Nanotechnology, 2006, 17, pp. 19811985.
    2. 2)
      • 30. Jia, G., Liu, K., Zheng, Y., et al: ‘Highly uniform Gd(OH)3 and Gd2O3:Eu3+ nanotubes: facile synthesis and luminescenc properties’, J. Phys. Chem. C, 2009, 113, pp. 60506055.
    3. 3)
      • 19. Dhanaraj, J., Jagannathan, R., Trivedi, D. C.: ‘Y2o2s:Eu3+ nanocrystals-synthesis and luminescent properties’, J. Mater. Chem., 2003, 13, pp. 17781782.
    4. 4)
      • 25. Tian, Y., Lu, F., Xing, M., et al: ‘Upconversion luminescence properties of Y2O2S:Er3+@Y2O2S:Yb3+,Tm3+ core-shell nanoparticles prepared via homogeneous co-precipitatio’, Opt. Mater., 2017, 64, pp. 5863.
    5. 5)
      • 2. Yang, Y.: ‘Upconversion nanophosphors for use in bioimaging, therapy, drug delivery and bioassays’, Microchim. Acta, 2014, 181, pp. 263294.
    6. 6)
      • 8. Kanagasubbulakshmi, S., Kadirvelu, K.: ‘Nano interface potential influences in CdTe quantum dots and biolabeling’, Appl. Nanosci., 2018, 8, (3), pp. 285295.
    7. 7)
      • 1. Tang, Y., Hu, J., Elmenoufy, A. H., et al: ‘Highly efficient FRET system capable of deep photodynamic therapy established on X ray excited mesoporous LaF3:Tb scintillating nanoparticles’, ACS Appl. Mater. Interfaces, 2015, 7, pp. 1226112269.
    8. 8)
      • 21. Zhao, F., Yuan, M., Zhang, W., et al: ‘Monodisperse lanthanide xysulfide nanocrystals’, J. Am. Chem. Soc., 2006, 128, pp. 1175811759.
    9. 9)
      • 18. Koskenlinna, M., Leskela, M., Niinisto, L.: ‘Synthesis and luminescence properties of europium-activated yttrium oxysulfide phosphors’, J. Electrochem. Soc., 1976, 123, pp. 7578.
    10. 10)
      • 28. Hakmeh, N., Chlique, C., Merdrignac-Conanec, O., et al: ‘Combustion synthesisandup-onversionluminescence of La2O2S:Er3+,Yb3+ nanophosphors’, J. Solid State Chem., 2015, 226, pp. 255261.
    11. 11)
      • 23. Dai, Q.L., Song, H.W., Wang, M.Y., et al: ‘Size and concentration effects on the photoluminescence of La2O2S:Eu3+ nanocrystals’, J. Phys. Chem. C, 2008, 112, pp. 1939919404.
    12. 12)
      • 38. Zheng, K., Wang, L., Zhang, D., et al: ‘Power switched multiphoton upconversion emissions of Er3+ in Yb3+/Er3+ codoped β-NaYF4 microcrystals induced by 980 nm excitation’, Opt. Express, 2010, 18, (3), pp. 29342939.
    13. 13)
      • 11. Hsieh, F.J., Sotoma, S., Lin, H.H., et al: ‘Bioorthogonal fluorescent nanodiamonds for continuous long-term imaging and tracking of membrane proteins’, ACS Appl. Mater. Interfaces, 2019, 11, (22), pp. 1977419781.
    14. 14)
      • 26. Pokhrel, M., Gangadharan, A. K., Sardar, D. K.: ‘High upconversion quantum yield at low pump threshold in Er3+/Yb3+ doped La2O2S phosphor’, Mater. Lett., 2013, 99, pp. 8689.
    15. 15)
      • 20. Luo, X.X., Cao, W.H.: ‘Ethanol-assistant solution combustion method to prepare La2O2S:Yb, Pr nanometer phosphor’, J. Alloys Compd., 2008, 460, pp. 529534.
    16. 16)
      • 37. Berry, M.T., May, P.S.: ‘Disputed mechanism for NIR-to-red upconversion luminescence in NaYF4:Yb3+,Er3+’, J. Phys. Chem. A, 2015, 119, pp. 98059811.
    17. 17)
      • 24. Balda, R., Hakmeh, N., Merdrignac-Conanec, O., et al: ‘Upconversion emission of erbium-doped lanthanum oxysulfide powders for temperature sensing’. Proc. of SPIE, 2017, 10100, 101000R pp. 18.
    18. 18)
      • 3. DaCosta1, M.V., Doughan, S., Han, Y., et al: ‘Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review’, Anal. Chim. Acta, 2014, 832, pp. 133.
    19. 19)
      • 12. Bednarkiewicz, A., Chan, E. M., Kotulska, A., et al: ‘Photon avalanche in lanthanide doped nanoparticles for biomedical applications: super-resolution imaging’, Nanoscale Horiz., 2019, 4, pp. 881889.
    20. 20)
      • 5. Kamkaew, A., Chen, F., Zhan, Y. H., et al: ‘Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy’, ACS Nano, 2016, 10, pp. 39183935.
    21. 21)
      • 15. Martín-Rodríguez, R., Fischer, S., Ivaturi, A., et al: ‘Highly efficient IR to NIR upconversion in Gd2O2S:Er3+ for photovoltaic applications’, Chem. Mater., 2013, 25, pp. 19121921.
    22. 22)
      • 39. Wang, C., Cheng, L., Liu, Z., ‘Drug delivery with upconversion nanoparticles for multifunctional targeted cancer cell imaging and therapy’, Biomaterials, 2011, 32, pp. 11101120.
    23. 23)
      • 31. Han, L., Hu, Y.H., Pan, M.M., et al: ‘New tactic to achieve Y2O 2S:Yb3+/Er3+, up-conversion luminescent hollow nanofibers’, CrystEngComm, 2015, 17, pp. 25292535.
    24. 24)
      • 9. Moura, I.M.R., Filho, P.E.C., Seabra, M.A.B.L., et al: ‘Highly fluorescent positively charged ZnSe quantum dots for bioimaging’, J. Lumin., 2018, 201, pp. 284289.
    25. 25)
      • 13. Huang, Y., Skripka, A., Labrador-Páez, L., et al: ‘Upconverting nanocomposites with combined photothermal and photodynamic effects’, Nanoscale, 2018, 3, (10), pp. 791799.
    26. 26)
      • 32. Song, H., Xia, H., Sun, B., et al: ‘Upconversion luminescence dynamics in Er3+/Yb3+ codoped nanocrystalline yttria’, Chin. Phys. Lett., 2006, 23, (2), pp. 474477.
    27. 27)
      • 27. Liu, H., Liu, P., Su, X., et al: ‘One-pot solvothermal synthesis of singly doped Eu3+ and codoped Er3+, Yb3+ heavy rare earth oxysulfide Y2O2S nano-aggregates and their luminescence study’, RSC Adv., 2014, 4, pp. 5704857053.
    28. 28)
      • 7. Zheng, B., Wang, H.J., Pan, H.Z., et al: ‘Near-infrared light ‘triggered upconversion optogenetic nanosystem for cancer therapy’, ACS Nano, 2017, 11, (12), pp. 1189811907.
    29. 29)
      • 36. Dong, H., Sun, L., Yan, C., ‘Energy transfer in lanthanide upconversion studies for extended optical applications’, Chem. Soc. Rev., 2015, 44, pp. 16081634.
    30. 30)
      • 34. Song, B., Sun, T., Wang, S., et al: ‘Three-photon upconversion luminescence phenomenon for the green levels in Er3+/Yb3+ codoped cubic nanocrystalline yttria’, Solid State Commun., 2004, 132, (6), pp. 409413.
    31. 31)
      • 14. Park, Y., Lee, K.T., Suh, Y.D., et al: ‘Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging’, Chem. Soc. Rev., 2015, 44, pp. 13021317.
    32. 32)
      • 16. Tanner, P.A., Pei, Z.W.: ‘Cooperative electronic absorption in Eu2O2S’, J. Phys. Chem. Solids, 2001, 62, pp. 683686.
    33. 33)
      • 6. Park, J. H., Gu, L., Maltzahn, G., et al: ‘Biodegradable luminescent porous silicon nanoparticles for in vivo applications’, Nat. Mater., 2009, 8, pp. 331336.
    34. 34)
      • 10. Wei, J., Qiu, J.: ‘Unveil the fluorescence of carbon quantum dots, advanced engineering’, Materials (Basel), 2015, 17, pp. 138142.
    35. 35)
      • 17. Pitha, J.J., Smith, A.L., Ward, R.: ‘The preparation of lanthanum oxysulfide and its properties as a base material for phosphors stimulated by infrared’, J. Am. Chem. Soc., 1947, 69, pp. 18701871.
    36. 36)
      • 33. Nadort, A., Zhao, J., Goldys, E. M.: ‘Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties’, Nanoscale, 2016, 8, pp. 1309913130.
    37. 37)
      • 22. Huang, Y.Z., Chen, L., Wu, L.M.: ‘Crystalline nanowires of Ln2O2S, Ln2O2S2, LnS2 (Ln = La, Nd), and La2O2S:Eu3+. conversions via the boron-sulfur method that preserve shape’, Cryst. Growth Des., 2008, 8, pp. 739743.
    38. 38)
      • 4. Gao, C.Y., Lin, Z. H., Wu, Z. G., et al: ‘Stem-cell-membrane camouflaging on near-infrared photoactivated upconversion nanoarchitectures for in vivo remote-controlled photodynamic therapy’, ACS Appl. Mater. Interfaces, 2016, 8, pp. 3425234260.
    39. 39)
      • 35. Bai, X., Song, H., Pan, G., et al: ‘Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: saturation and thermal effects’, J. Phys. Chem. C, 2007, 111, (36), pp. 1361113617.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2019.0376
Loading

Related content

content/journals/10.1049/iet-nbt.2019.0376
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading