access icon free Postponement growth and antioxidative response of Brassica nigra on CuO and ZnO nanoparticles exposure under soil conditions

Due to unique physiochemical properties, nanoparticles (NPs) have acquired substantial attention in the field of research. However, threats of ecotoxicity and phytotoxicity have limited their biological applications. In this study in vivo experiments were performed to determine the effect of CuO (12.5, 25 and 50 mg/kg) and ZnO (200, 400 and 600 mg/kg) NPs on growth, and antioxidant activities of Brassica nigra. The results showed that CuO NPs did not affect the seed germination while presence of ZnO NPs in the soil generated an inhibitory effect. Both CuO and ZnO NPs positively influenced the growth of stem and other physiological parameters i.e. stem height increased (23%) at 50 mg/kg CuO while root length decreased (up to 44%) with an increase in the concentration of NPs. Phytochemical screening of apical, middle and basal leaves showed elevated phenolic and flavonoid contents in the range of 15.3–59 μg Gallic Acid Equivalent (GAE)/mg Dry Weight (DW) and 10–35 μg Querceitin Equivalent (QE)/mg DW, respectively, in NPs-treated plants. Antioxidant activity was higher in CuO NPs-treated plants as compared to ZnO and control plants. Results conclude that CuO and ZnO NPs at low concentrations can be exploited as nanofertilisers in agriculture fields.

Inspec keywords: organic compounds; renewable materials; nanobiotechnology; biochemistry; agricultural products; zinc compounds; crops; toxicology; nanofabrication; enzymes; nanoparticles; soil

Other keywords: unique physiochemical properties; ZnO; antioxidative response; antioxidant activities; mass 15.3 mug to 59.0 mug; ZnO NPs effect; CuO NP-treated plants; control plants; soil conditions; germination; CuO; antioxidant activity; brassica nigra plant; mass 10.0 mug to 35.0 mug; ZnO nanoparticles exposure

Subjects: Agriculture; Engineering materials; Products and commodities; Health and safety aspects; Industrial processes; Environmental issues

References

    1. 1)
      • 5. Wang, J., Zhang, X., Chen, Y., et al: ‘Toxicity assessment of manufactured nanomaterials using the unicellular green alga chlamydomonas reinhardtii’, Chemosphere, 2008, 73, pp. 11211128.
    2. 2)
      • 26. Nair, P.M.G., Chung, I.M.: ‘Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes’, Environ. Sci. Pollut. Res., 2014, 21, (22), pp. 1270912722.
    3. 3)
      • 17. Adhikari, T., Kundu, S., Biswas, A.K., et al: ‘Effect of copper oxide nano particle on seed germination of selected crops’, J. Agri. Sci. Technol. A, 2012, 2, (6A), pp. 815819.
    4. 4)
      • 3. Ali, A., Phull, A.R., Zia, M.: ‘Elemental zinc to zinc nanoparticles: is ZnO NPs crucial for life? Synthesis, toxicological, and environmental concerns’, Nanotechnol. Rev., 2018, 7, (5), pp. 413441.
    5. 5)
      • 6. Wang, H. H., Wick, R.L., Xing, B.S.: ‘Toxicity of nanoparticulate and bulk Zno, Al2O3 and TiO2 to the nematode Caenorhabditis elegans’, Environ. Pollut., 2009, 157, (4), pp. 11711177.
    6. 6)
      • 4. Johansen, L.A., Pedersen, A.K., Jensen, U., et al: ‘Tio2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil’, Environ. Toxicol. Chem., 2008, 27, pp. 18951903.
    7. 7)
      • 14. Zafar, H., Ali, A., Ali, J.S.., et al: ‘Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response’, Front. Plant Sci., 2016, 7, p. 535.
    8. 8)
      • 15. Ali, A., Ambreen, S., Javed, R., et al: ‘Zno nanostructure fabrication in different solvents transforms physio-chemical, biological and photodegradable properties’, Mat. Sci. Eng. C, 2017, 74, pp. 137145.
    9. 9)
      • 29. Lin, C.Y., Lin, L.C., Ho, S.T., et al: ‘Antioxidant activities and phytochemicals of leaf extracts from 10 native Rhododendron species in Taiwan’, Evi. Based Com. Alt. Med., 2014, Article ID 283938.
    10. 10)
      • 25. Manivasagaperumal, R., Balamurugan, S., Thiyagarajan, G., et al: ‘Effect of zinc on germination, seedling growth and biochemical content of cluster bean (Cyamopsis tetragonoloba (L.) Taub)’, Curr. Bot., 2011, 2, (5), pp. 1115.
    11. 11)
      • 11. Arif, N., Yadav, V., Singh, S., et al: ‘Interaction of copper oxide nanoparticles with plants’, Nanomater. Plants Algae Microorg., 2018, 1, pp. 297310.
    12. 12)
      • 24. Bonnet, M., Camares, O., Veisseire, P.: ‘Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo)’, J. Exp. Bot., 2000, 51, (346), pp. 945953.
    13. 13)
      • 32. Rajput, V.D., Minkina, T., Sushkova, S., et al: ‘Structural and ultrastructural changes in nanoparticle exposed plants’, in ‘Nanoscience for sustainable agriculture' (Springer, Cham, Switzerland, 2019), pp. 281295.
    14. 14)
      • 19. Lee, C.W., Mahendra, S., Zodrow, K., et al: ‘Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana’, Environ. Toxicol. Chem., 2010, 29, (3), pp. 669675.
    15. 15)
      • 18. Ain, N., ul Haq, I., Abbasi, B.H., et al: ‘Influence of PVP/PEG impregnated Cuo NPs on physiological and biochemical characteristics of Trigonella foenum-graecum L’, IET Nanobiotechnol.., 2017, 12, (3), pp. 349356.
    16. 16)
      • 2. Naz, S., Gul, A., Zia, M.: ‘Toxicity of copper oxide nanoparticles: a review study’, IET Nanobiotechnol.., 2020, 14, pp. 113.
    17. 17)
      • 31. Rajput, V., Minkina, T., Ahmed, B., et al: ‘Interaction of Copper-based nanoparticles to soil, terrestrial, and aquatic systems: crit. Rev. State sci. Fut. Perspec.’, Rev. Environ. Contam. Toxicol., 2020, 252, pp. 5196.
    18. 18)
      • 30. Rajamurugan, R., Selvaganabathy, N., Kumaravel, S., et al: ‘Polyphenol contents and antioxidant activity of Brassica nigra (L.) Koch. Leaf extract’, Nat. Prod. Res., 2012, 26, (23), pp. 22082210.
    19. 19)
      • 27. Yang, K.Y., Doxey, S., McLean, J.E., et al: ‘Remodeling of root morphology by CuO and ZnO nanoparticles: effects on drought tolerance for plants colonized by a beneficial pseudomonad’, Botany, 2017, 96, (3), pp. 175186.
    20. 20)
      • 21. Rajput, V., Minkina, T., Fedorenko, A., et al: ‘Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum)’, Sci. Total Environ., 2018, 645, pp. 11031113.
    21. 21)
      • 10. Grigore, M.E., Biscu, E.R., Holban, A.M., et al: ‘Methods of synthesis, properties and biomedical applications of CuO nanoparticles’, Pharmaceuticals, 2016, 9, (4), pp. 7583.
    22. 22)
      • 22. Weraduwage, S.M., Chen, J., Anozie, F.C., et al: ‘The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana’, Front. Plant Sci., 2015, 6, p. 167.
    23. 23)
      • 9. Hamblin, J., Stefanova, K., Angessa, T.T.: ‘Variation in chlorophyll content per unit leaf area in spring wheat and implications for selection in segregating material’, Pub. Lib. Sci. One, 2014, 9, (3), p. e92529.
    24. 24)
      • 28. Boonyanitipong, P., Kositsup, B., Kumar, P., et al: ‘Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L’, Inter. J. Biosci. Biochem. Bioinf., 2011, 1, (4), pp. 282285.
    25. 25)
      • 8. Du, W., Sun, Y., Ji, R., et al: ‘Tio2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil’, J. Environ. Monit., 2010, 13, pp. 822828.
    26. 26)
      • 16. Javed, R., Ahmed, M., ul Haq, I., et al: ‘PVP and PEG doped Cuo nanoparticles are more biologically active: antibacterial, antioxidant, antidiabetic and cytotoxic perspective’, Mat. Sci. Eng. C, 2017, 79, pp. 108115.
    27. 27)
      • 20. Singh, N.B., Amist, N., Yadav, K., et al: ‘Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops’, J. Nanoeng. Nanomanuf., 2013, 3, (4), pp. 353364.
    28. 28)
      • 1. Ali, A., Zafar, H., Zia, M., et al: ‘Synthesis, characterization, applications, and challenges of iron oxide nanoparticles’, Nanotechnol. Sci. Appl., 2016, 9, p. 49.
    29. 29)
      • 12. Oduor, A.M., Lankau, R.A., Strauss, S.Y., et al: ‘Introduced Brassica nigra populations exhibit greater growth and herbivore resistance but less tolerance than native populations in the native range’, New Phytol., 2011, 191, (2), pp. 536544.
    30. 30)
      • 23. Doncheva, S., Stoynova, Z., Velikova, V.: ‘Influence of succinate on zinc toxicity of pea plants’, J. Plant Nut., 2011, 24, (6), pp. 789804.
    31. 31)
      • 13. Zafar, H., Ali, A., Zia, M.: ‘Cuo nanoparticles inhibited root growth from Brassica nigra seedlings but induced root from stem and leaf explants’, Appl. Biochem. Biotechnol., 2017, 181, (1), pp. 365378.
    32. 32)
      • 7. Hou, J., Wu, Y., Li, X., et al: ‘Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms’, Chemosphere, 2018, 193, pp. 852860.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2019.0357
Loading

Related content

content/journals/10.1049/iet-nbt.2019.0357
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading