access icon free Bacteriocin-capped silver nanoparticles for enhanced antimicrobial efficacy against food pathogens

Bacteriocins produced by lactic acid bacteria are safer alternatives to the more popularly used chemical preservatives which exhibit several adverse effects. The bacteriocins have an advantage of being efficient in controlling food pathogens without possessing any side-effects. However, the bacteriocins have a limitation of exhibiting a narrow antimicrobial spectrum and having a high-dosage requirement. With an aim to combat these limitations, the present study involved the biosynthesis of bacteriocin-capped nanoparticles, using two bacteriocins (Bac4463 and Bac22) extracted and purified from Lactobacillus strains. Nanoconjugates synthesised at optimum conditions were characterized using various physico-chemical techniques. The interaction of bacteriocin-capped silver nanoparticles with the pathogenic bacteria was observed using scanning electron microscopy, wherein the deformed and elongated cells were clearly visible. In vitro antimicrobial efficacy of both Bac4463-capped silver nanoparticles and Bac22-capped silver nanoparticles against different food pathogens was observed to be enhanced in comparison to the antimicrobial activity of bacteriocins alone. Minimum inhibitory concentration was observed to be as low as 8 μg/ml for Bac4463-capped silver nanoparticles against Staphylococcus aureus, and 2 μg/ml for Bac22-capped silver nanoparticles against Shigella flexneri. This study, therefore, recommends the use of bacteriocin-capped nanoparticles as food preservatives to control the growth of food spoiling bacteria.

Inspec keywords: nanofabrication; food products; antibacterial activity; food preservation; microorganisms; preservatives; food safety; biotechnology; silver; nanoparticles; scanning electron microscopy; elongation

Other keywords: food pathogens; Bac22-capped silver nanoparticles; bacteriocin-capped silver nanoparticles; bacteriocins; enhanced antimicrobial efficacy; bacteriocin-capped nanoparticles; Bac4463-capped silver nanoparticles; chemical preservatives

Subjects: Health and safety aspects; Methods of nanofabrication and processing; Engineering materials; Products and commodities; Industrial processes; Food industry; Nanotechnology applications in biomedicine; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Biomedical materials

References

    1. 1)
      • 42. Loo, Y.Y., Rukayadi, Y., Nor-Khaizura, M.A., et al: ‘In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens’, Front Microbiol., 2018, 9, p.1555, doi: 10.3389/fmicb.2018.
    2. 2)
      • 38. Gomaa, Z.: ‘Synergistic antibacterial efficiency of bacteriocin and silver nanoparticles produced by probiotic Lactobacillus paracasei against multidrug resistant Bacteria’, Int. J. Pept. Res. Ther., 2019, 25, pp. 11131125. Available at https://doi.org/10.1007/s10989-018-9759-9.
    3. 3)
      • 32. Mubayi, A., Chatterji, S., Rai, P.M., et al: ‘Evidence based green synthesis of nanoparticles’, Adv. Mat. Lett., 2012, 3, pp. 519525, doi: 10.5185/amlett.2012.icnano.353.
    4. 4)
      • 19. Pirtarighat, S., Ghannadnia, M., Baghshahi, S.: ‘Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment’, J. Nanostruct. Chem., 2019, 9, pp. 19.
    5. 5)
      • 26. Pandit, R., Rai, M., Santosh, C.A.: ‘Enhanced antimicrobial activity of the food-protecting nisin peptide by bioconjugation with silver nanoparticles’, Environ. Chem. Lett., 2017, 15, pp. 443452.
    6. 6)
      • 8. Balciunas, E.M., Martinez, F.A.C., Todorov, S.D., et al: ‘Novel biotechnological applications of bacteriocins: a review’, Food Control., 2013, 32, pp. 134142.
    7. 7)
      • 22. Song, J.Y., Kim, B.S.: ‘Rapid biological synthesis of silver nanoparticles using plant leaf extracts’, Bioprocess Biosyst. Eng., 2009, 32, pp. 7984.
    8. 8)
      • 2. Sousa, C.P.: ‘The impact of food manufacturing practices on food borne diseases’, Braz. Arch. Biol. Technol., 2008, 51, pp. 815823.
    9. 9)
      • 1. World Health Organization. Factsheet: ‘Food Safety’. Available at https://www.who.int/news-room/fact-sheets/detail/food-safety, Published 04 June 2019.
    10. 10)
      • 18. Silveira, C.P., Torres-Rodríguez, J.M., Alvarado-Ramírez, E., et al: ‘MICs and minimum fungicidal concentrationsof amphotericin B, itraconazole, posaconazole and terbinafine in sporothrix schenckii’, J. Med. Microbiol., 2009, 58, pp. 16071610.
    11. 11)
      • 13. Stensberg, M.C., Wei, Q., McLamore, E.S., et al: ‘Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging’, Nanomedicine., 2011, 6, pp. 879898.
    12. 12)
      • 14. Alishahi, A.: ‘Antibacterial effect of chitosan nanoparticle loaded with nisin for the prolonged effect’, J. Food Saf., 2014, 34, pp. 111118.
    13. 13)
      • 7. Lauritsen, C.V., Kjeldgaard, J., Ingmer, H., et al: ‘Microbiota encompassing putative spoilage bacteria in retail packaged broiler meat and commercial broiler abattoir’, Int. J. Food Microbiol., 2019, 300, pp. 1421.
    14. 14)
      • 21. Singh, R., Wagh, P., Wadhwani, S., et al: ‘Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics’, Int J Nanomedicine, 2013, 8, pp. 42774290.
    15. 15)
      • 15. Fahim, H., Khairalla, A.S., El-Gendy, A.O.: ‘Nanotechnology: a valuable strategy to improve bacteriocin formulations’, Front Microbiol., 2016, 7, pp. 1385.
    16. 16)
      • 5. Bourdichon, F., Rouzeau, K.: ‘Microbial food spoilage: a major concern for food business operators’, New Food, 2012, 15, (3), p. 54.
    17. 17)
      • 16. Sidhu, P.K., Nehra, K.: ‘Bacteriocin-nanoconjugates as emerging compounds for enhancing antimicrobial activity of bacteriocins’, JKSUS, 2019, 31, pp. 758767.
    18. 18)
      • 12. Ansari, A., Zohra, R.R., Tarar, O.M., et al: ‘Screening, purification and characterization of thermostable, protease resistant bacteriocin active against methicillin resistant Staphylococcus aureus (MRSA)’, BMC Microbiol., 2018, 18, pp. 192.
    19. 19)
      • 33. Ansari, A.S., Pervez, U., Javed, M.I., et al: ‘Characterization and interplay of bacteriocin and exopolysaccharidemediatedsilver nanoparticles as an antibacterial agent’, Int. J. Biol. Macromol., 2018, 115, pp. 643650.
    20. 20)
      • 17. Sharma, T.K., Sapra, M., Chopra, A., et al: ‘Interaction of bacteriocin-capped silver nanoparticles with food pathogens and their antibacterial effect’, Int. J. Green Nanotechnol., 2012, 4, pp. 93110.
    21. 21)
      • 3. Guerra, M.M.M., De Almeida, A.M., Willingham, A.L.: ‘An overview of food safety and bacterial foodborne zoonoses in food production animals in the Caribbean region’, Trop. Anim. Health Prod., 2016, 48, pp. 10951108.
    22. 22)
      • 27. Golubeva, O.Y., Shamova, O.V., Orlov, D.S., et al: ‘Synthesis and study of antimicrobial activity of bioconjugates of silver nanoparticles and endogenous antibiotics’, Glass Phys. Chem., 2011, 37, pp. 7884, doi: 10.1134/S1087659611010056.
    23. 23)
      • 10. Costa, R.J., Voloski, F.L.S., Mondadori, R.G., et al: ‘Preservation of meat products with bacteriocins produced by lactic acid Bacteria isolated from meat’, J. Food Qual., 2019, 2019, pp. 112. Available at https://doi.org/10.1155/2019/4726510.
    24. 24)
      • 29. Spectroscopy Tutorial. Department of Chemistry and Biochemistry, University of Colorado, Boulder. Available at http://orgchem.colorado.edu/Spectroscopy/specttutor/irchart.html, Accessed 18 December 2015.
    25. 25)
      • 37. Moodley, J.S., Naidu Krishna, S.B., Pillay, K.G.P.: ‘Production, characterization and antimicrobial activity of silver nanoparticles produced by Pediococcus Acidilactici’, Dig. J. Nanomater. Biostruct., 2018, 13, pp. 7786.
    26. 26)
      • 39. Thirumurugan, A., Ramachandran, S., Shiamala, G.A.: ‘Combined effect of bacteriocin with gold nanoparticles against food spoiling bacteria – an approach for food packaging material preparation’, Int. Food Res. J., 2013, 20, pp. 19091912.
    27. 27)
      • 41. Morales-Avila, E., Ferro-Flores, G., Ocampo-García, B.E., et al: ‘Antibacterial efficacy of gold and silver nanoparticles functionalized with the ubiquicidin (29–41) antimicrobial peptide’, J. Nanomater., 2017, 2017, pp. 110. Article ID 5831959, doi: https://doi.org/10.1155/2017/5831959.
    28. 28)
      • 40. Singh, A.K., Bai, X., Amalaradjou, M.A.R., et al: ‘Antilisterial and antibiofilm activities of pediocin and LAP functionalized gold nanoparticles’, Front. Sustain. Food Syst., 2018, 2, pp. 00074.
    29. 29)
      • 28. Rasheed, Q.J.: ‘Synthesis and optimization of nisin–silver nanoparticles at different conditions’, J. Eng. Technol., 2015, 33, pp. 331341.
    30. 30)
      • 34. Hong, L., Kim, W.S., Lee, S.M., et al: ‘Pullulan nanoparticles as prebi-otics enhanced anti-bacterial properties of lactobacillus plantarum through an in-duction of mild stress in probiotics’, Front Microbol., 2019, 10, pp. 142.
    31. 31)
      • 11. Patil, S.D., Sharma, R., Bhattacharyya, T., et al: ‘Antibacterial potential of a small peptide from Bacillus sp. RPT-0001 and its capping for green synthesis of silver nanoparticles’, J. Microbiol., 2015, 53, pp. 643652.
    32. 32)
      • 25. Saravana, K.P., Annalakshmi, A.: ‘Enhancing the antimicrobial activity of nisin by encapsulating on silver nanoparticle synthesized by bacillus sp.’, Int. J. Pharma. Biol. Arch., 2012, 3, pp. 406410.
    33. 33)
      • 6. Wang, H., Zhang, X., Wang, G., et al: ‘Bacterial community and spoilage profiles shift in response to packaging in yellow-feather broiler, a highly popular meat in Asia’, Front Microbiol., 2017, 8, pp. 2588, doi: 10.3389/fmicb.2017.02588.
    34. 34)
      • 36. Jang, M., Lee, S., Hwang, Y.S.: ‘Characterization of silver nanoparticles under environmentally relevant conditions using asymmetrical flow field-flow fractionation (AF40)’, PLOS One, 2015, 10, p. e0143149, doi: 10.1371/journal.pone.0143149.
    35. 35)
      • 24. Singh, K.K., Shankar, P.D., Abdhul, K.: ‘A study of microbial diversity for bacteriocins production from ngari fish and noble synthesis of silver nanoparticles and its antimicrobial activities’, World J. Pharm. Pharm. Sci., 2016, 5, pp. 953974.
    36. 36)
      • 23. Ndikau, M., Noah, N.M., Andala, D.M., et al: ‘Green synthesis and characterization of silver nanoparticles using Citrullus lanatus fruit rind extract’, Int. J. Anal. Chem., 2017, 2017, pp. 19. Available at https://doi.org/10.1155/2017/8108504.
    37. 37)
      • 31. Bhople, S., Gaikwad, S., Deshmukh, S., et al: ‘Myxobacteria-mediated synthesis of silver nanoparticles and their impregnation in wrapping paper used for enhancing shelf life of apples’, IET Nanobiotechnol.., 2016, 10, pp. 389394, doi: 10.1049/iet-nbt.2015.0111.
    38. 38)
      • 9. Cotter, P.D., Ross, R.P., Hill, C.: ‘Bacteriocins – a viable alternative to antibiotics?’, Nat. Rev. Microbiol., 2013, 11, pp. 95105.
    39. 39)
      • 20. Jamdagni, P., Khatri, P., Rana, J.S.: ‘Biogenic synthesis of silver nanoparticles from leaf extract of Elettaria Cardamomum and their antifungal activity against phytopathogens’, Adv. Mater. Proc., 2018, 3, pp. 129135.
    40. 40)
      • 30. Monowar, T., Rahman, M.S., Bhore, S.J., et al: ‘Silver nanoparticles synthesized by using the endophytic bacterium Pantoea ananatis are promising antimicrobial agents against multidrug resistant Bacteria’, Molecules, 2018, 23, p. 3220.
    41. 41)
      • 4. Gram, L., Ravn, L., Rasch, M., et al: ‘Food spoilage–interactions between food spoilage bacteria’, Int. J. Food Microbiol., 2002, 78, pp. 7997.
    42. 42)
      • 35. Sikora, A., Bartczak, D., Geissler, D., et al: ‘A systematic comparison of different techniques to determine the zeta potential of silica nanoparticles in biological medium’, Anal. Methods, 2015, 7, pp. 98359843.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2019.0323
Loading

Related content

content/journals/10.1049/iet-nbt.2019.0323
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading