access icon free Integration of Cynodon dactylon and Muraya koenigii plant extracts in amino-functionalised silica-coated magnetic nanoparticle as an effective sorbent for the removal of chromium(VI) metal pollutants

Immobilised magnetic nanoparticles are extensively used owing to their superparamagnetic nature, surface interaction, and binding specificity with the appropriate portentous substances. The present research focuses on the development of a portentous, robust carrier, which integrates the silica-coated amino-functionalised magnetic nanoparticle (AF-MnP) with the plant extracts of Cynodon dactylon (L1) and Muraya koenigii (L2) for the stable and enhanced removal of hazardous hexavalent chromium pollutant in the wastewater. Vibrating sample magnetometer (M s – 45 emu/g) determines the superparamagnetic properties; Fourier-transform infrared spectroscopy determines the presence of functional groups such as NH2, Si–O–Si, C=C; high-resolution transmission electron microscopy, field emission scanning electron microscope and energy-dispersive X-ray spectroscopy determine the size of the green adsorbents in the range of 20 nm and the presence of elements such as Fe, N, and Si determines the efficacy of the synthesised silica-coated AF-MnP. The AF-MnP-L1 shows the maximum adsorption capacity of 34.7 mg/g of sorbent calculated from the Langmuir isotherm model and the process follows pseudo-second-order kinetics. After treatment, the adsorbents can be easily separated from the solution in the presence of an external magnetic field and are reused for nine cycles after acid treatment with the minimal loss of adsorption efficiency.

Inspec keywords: nanofabrication; Fourier transform infrared spectra; silicon compounds; nanoparticles; nanomagnetics; wastewater treatment; X-ray chemical analysis; adsorption; superparamagnetism; field emission scanning electron microscopy; magnetic particles; chromium; transmission electron microscopy; magnetometry; manganese compounds; iron compounds

Other keywords: Fourier-transform infrared spectroscopy; wastewater treatment; magnetic field; green adsorbents; amino-functionalised silica-coated magnetic nanoparticle; functional groups; energy-dispersive X-ray spectroscopy; Cr; high-resolution transmission electron microscopy; Langmuir isotherm model; Cynodon dactylon; surface interaction; pseudo-second-order kinetics; adsorption capacity; SiO2-MnP; superparamagnetic nature; chromium(VI) metal pollutants; vibrating sample magnetometry; field emission scanning electron microscopy; Muraya koenigii; size 20.0 nm

Subjects: Sorption and accommodation coefficients (surface chemistry); Nanofabrication; Environmental science technology; Adsorption and desorption kinetics; evaporation and condensation; Physical chemistry aspects of chemical technology; Electromagnetic radiation spectrometry (chemical analysis); Water (environmental science); Fine-particle magnetic systems; Amorphous and nanostructured magnetic materials; Industrial processes; Environmental issues; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Other methods of nanofabrication; Infrared and Raman spectra in inorganic crystals; Magnetic properties of nanostructures

References

    1. 1)
      • 9. Jiang, T.F., Lv, Z.H., Wang, Y.H.: ‘Separation and determination of chalcones from Carthamus tinctorius L. and its medicinal preparation by capillary zone electrophoresis’, J. Sep. Sci., 2005, 28, (11), pp. 12441247.
    2. 2)
      • 13. Philip, D., Unni, C., Aromal, S.A., et al: ‘Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles’, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 2011, 78, (2), pp. 899904.
    3. 3)
      • 10. Bouhrara, M., Polshettiwar, V., Basset, J.-M., et al: ‘Magnetically recoverable nanocatalysts’, Chem. Rev., 2011, 111, (5), pp. 30363075.
    4. 4)
      • 25. Vishnu, D., Neeraj, G., Swaroopini, R., et al: ‘Synergetic integration of laccase and versatile peroxidase with magnetic silica microspheres towards remediation of biorefinery wastewater’, Environ. Sci. Pollut. Res., 2017, 24, (22), pp. 1799318009.
    5. 5)
      • 18. Gopinathan, R., Bhowal, A., Garlapati, C.: ‘Adsorption studies of some anionic dyes adsorbed by chitosan and new four-parameter adsorption isotherm model’, J. Chem. Eng. Data, 2019, 64, (6), pp. 23202328.
    6. 6)
      • 31. Kowanga, K.D., Gatebe, E., Mauti, G.O., et al: ‘Kinetic, sorption isotherms, pseudo-first-order model and pseudo-second-order model studies of Cu(II) and Pb(II) using defatted Moringa oleifera seed powder’, J. Phytopharm., 2016, 5, (2), pp. 7178.
    7. 7)
      • 37. Wang, J., Zheng, S., Shao, Y., et al: ‘Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal’, J. Colloid Interface Sci., 2010, 349, (1), pp. 293299.
    8. 8)
      • 22. Helen Kalavathy, M., Miranda, L.R.: ‘Moringa oleifera-A solid phase extractant for the removal of copper, nickel and zinc from aqueous solutions’, Chem. Eng. J., 2010, 158, (2), pp. 188199.
    9. 9)
      • 15. Reza, R.T., Pérez, C.A.M., González, C.A.R., et al: ‘Effect of the polymeric coating over Fe3O4 particles used for magnetic separation’, Cent. Eur. J. Chem., 2010, 8, (5), pp. 10411046.
    10. 10)
      • 3. Sahraei, R., Ghaemy, M.: ‘Synthesis of modified gum tragacanth/graphene oxide composite hydrogel for heavy metal ions removal and preparation of silver nanocomposite for antibacterial activity’, Carbohydr. Polym., 2017, 157, pp. 823833.
    11. 11)
      • 36. Sun, X., Yang, L., Li, Q., et al: ‘Amino-functionalized magnetic cellulose nanocomposite as adsorbent for removal of Cr(VI): synthesis and adsorption studies’, Chem. Eng. J., 2014, 241, pp. 175183.
    12. 12)
      • 6. Zou, Y., Wang, X., Khan, A., et al: ‘Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review’, Environ. Sci. Technol., 2016, 50, (14), pp. 72907304.
    13. 13)
      • 42. Nithya, K., Sathish, A., Senthil Kumar, P., et al: ‘Functional group-assisted green synthesised superparamagnetic nanoparticles for the rapid removal of hexavalent chromium from aqueous solution’, IET Nanobiotechnol., 2017, 11, (7), pp. 852860.
    14. 14)
      • 34. Kalavathy, M.H., Karthikeyan, T., Rajgopal, S., et al: ‘Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust’, J. Colloid Interface Sci., 2005, 292, (2), pp. 354362.
    15. 15)
      • 29. Jesionowski, T., Zdarta, J., Krajewska, B.: ‘Enzyme immobilization by adsorption: a review’, Adsorption, 2014, 20, pp. 801821.
    16. 16)
      • 14. Kumar, V.V., Sivanesan, S., Cabana, H.: ‘Magnetic cross-linked laccase aggregates – bioremediation tool for decolorization of distinct classes of recalcitrant dyes’, Sci. Total Environ., 2014, 487, (1), pp. 830839.
    17. 17)
      • 35. Sarma, G.K., Sen Gupta, S., Bhattacharyya, K.G.: ‘Nanomaterials as versatile adsorbents for heavy metal ions in water: a review’, Environ. Sci. Pollut. Res., 2019, 26, (7), pp. 62456278.
    18. 18)
      • 7. Li, Y., Ali, N., Yao, H., et al: ‘Influence of biochars on the accessibility of organochlorine pesticides and microbial community in contaminated soils’, Sci. Total Environ., 2018, 647, pp. 551560.
    19. 19)
      • 8. Weng, X., Wu, J., Ma, L., et al: ‘Impact of synthesis conditions on Pb(II) removal efficiency from aqueous solution by green tea extract reduced graphene oxide’, Chem. Eng. J., 2019, 359, pp. 976981.
    20. 20)
      • 41. Verma, B., Balomajumder, C.: ‘Magnetic magnesium ferrite-doped multi-walled carbon nanotubes: an advanced treatment of chromium-containing wastewater’, Environ. Sci. Pollut. Res., 2020, 1, pp. 111.
    21. 21)
      • 39. Xiao, F., Cheng, J., Cao, W., et al: ‘Removal of heavy metals from aqueous solution using chitosan-combined magnetic biochars’, J. Colloid Interface Sci., 2019, 540, pp. 579584.
    22. 22)
      • 40. Guo, X., Du, B., Wei, Q., et al: ‘Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water’, J. Hazard. Mater., 2014, 278, pp. 211220.
    23. 23)
      • 30. Yi, Y., Tsang, P.E., Fang, Z., et al: ‘Green synthesis of iron-based nanoparticles from extracts of Nephrolepis auriculata and applications for Cr(VI) removal’, Mater. Lett., 2018, 234, (VI), pp. 388391.
    24. 24)
      • 32. Bayramoǧlu, G., Yakup Arica, M.: ‘Construction a hybrid biosorbent using Scenedesmus quadricauda and Ca-alginate for biosorption of Cu(II), Zn(II) and Ni(II): kinetics and equilibrium studies’, Bioresour. Technol., 2009, 100, (1), pp. 186193.
    25. 25)
      • 1. Qazi, U.Y., Javaid, R.: ‘A review on metal nanostructures: preparation methods and their potential applications’, Adv. Nanoparticles, 2016, 5, (1), pp. 2743.
    26. 26)
      • 27. Mohammadi, P., Sheibani, H.: ‘Green synthesis of Fe3O4@SiO2–Ag magnetic nanocatalyst using safflower extract and its application as recoverable catalyst for reduction of dye pollutants in water’, Appl. Organomet. Chem., 2018, 32, (4), pp. 112.
    27. 27)
      • 24. Chen, Y., Song, Y.F.: ‘Highly selective and efficient removal of Cr(VI) and Cu(II) by the chromotropic acid-intercalated Zn–Al layered double hydroxides’, Ind. Eng. Chem. Res., 2013, 52, (12), pp. 44364442.
    28. 28)
      • 28. Gou, Y., Zhang, F., Zhu, X., et al: ‘Biosynthesis and characterisation of silver nanoparticles using Sphingomonas paucimobilis sp. BDS1’, IET Nanobiotechnol., 2015, 9, (2), pp. 5357.
    29. 29)
      • 5. Wang, Y.-T., Chirwa, E.M., Shen, H.: ‘Cr(VI) reduction in continuous-flow coculture bioreactor’, J. Environ. Eng., 2000, 126, pp. 300306.
    30. 30)
      • 33. Wang, B., Bai, Z., Jiang, H., et al: ‘Selective heavy metal removal and water purification by microfluidically-generated chitosan microspheres: characteristics, modeling and application’, J. Hazard. Mater., 2019, 364, pp. 192205.
    31. 31)
      • 2. Massironi, A., Morelli, A., Grassi, L., et al: ‘Ulvan as novel reducing and stabilizing agent from renewable algal biomass: application to green synthesis of silver nanoparticles’, Carbohydr. Polym., 2019, 203, pp. 310321.
    32. 32)
      • 4. Zhang, W., Shi, X., Zhang, Y., et al: ‘Synthesis of water-soluble magnetic graphene nanocomposites for recyclable removal of heavy metal ions’, J. Mater. Chem. A, 2013, 5, pp. 17451753.
    33. 33)
      • 38. Ji, J., Chen, G., Zhao, J.: ‘Preparation and characterization of amino/thiol bifunctionalized magnetic nanoadsorbent and its application in rapid removal of Pb(II) from aqueous system’, J. Hazard. Mater., 2019, 368, (December 2018), pp. 255263.
    34. 34)
      • 17. Chávez-Guajardo, A.E., Medina-Llamas, J.C., Maqueira, L., et al: ‘Efficient removal of Cr(VI) and Cu(II) ions from aqueous media by use of polypyrrole/maghemite and polyaniline/maghemite magnetic nanocomposites’, Chem. Eng. J., 2015, 281, pp. 826836.
    35. 35)
      • 21. Huang, D., Liu, C., Zhang, C., et al: ‘Cr(VI) removal from aqueous solution using biochar modified with Mg/Al-layered double hydroxide intercalated with ethylenediaminetetraacetic acid’, Bioresour. Technol., 2019, 276, pp. 127132.
    36. 36)
      • 26. Prasad, C., Sreenivasulu, K., Gangadhara, S., et al: ‘Bio inspired green synthesis of Ni/Fe3O4 magnetic nanoparticles using Moringa oleifera leaves extract: a magnetically recoverable catalyst for organic dye degradation in aqueous solution’, J. Alloys Compd., 2017, 700, (2017), pp. 252258.
    37. 37)
      • 43. Shi, S., Yang, J., Liang, S., et al: ‘Enhanced Cr(VI) removal from acidic solutions using biochar modified by Fe3O4@SiO2–NH2 particles’, Sci. Total Environ., 2018, 628–629, pp. 499508.
    38. 38)
      • 23. Bhaumik, M., Maity, A., Srinivasu, V.V., et al: ‘Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite’, J. Hazard. Mater., 2011, 190, (1–3), pp. 381390.
    39. 39)
      • 11. Deng, Y.H., Wang, C.C., Hu, J.H., et al: ‘Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach’, Colloids Surfaces A, Physicochem. Eng. Asp., 2005, 262, (1–3), pp. 8793.
    40. 40)
      • 20. Gnanasekaran, R., Dhandapani, B., Saravanan, A.: ‘Biosorption of methylene blue dye by chemically modified Aspergillus japonicus MG183814: kinetics, thermodynamic and equilibrium studies’, Desalin. Water Treat., 2018, 122, pp. 132145.
    41. 41)
      • 12. Sahu, N., Soni, D., Chandrashekhar, B., et al: ‘Synthesis and characterization of silver nanoparticles using Cynodon dactylon leaves and assessment of their antibacterial activity’, Bioprocess Biosyst. Eng., 2013, 36, (7), pp. 9991004.
    42. 42)
      • 44. Mittal, A., Ahmad, R., Hasan, I.: ‘Iron oxide-impregnated dextrin nanocomposite: synthesis and its application for the biosorption of Cr(VI) ions from aqueous solution’, Desalin. Water Treat., 2016, 57, (32), pp. 1513315145.
    43. 43)
      • 19. Liu, H., Li, P., Zhang, T., et al: ‘Fabrication of recyclable magnetic double-base aerogel with waste bioresource bagasse as the source of fiber for the enhanced removal of chromium ions from aqueous solution’, Food Bioprod. Process., 2020, 119, pp. 257267.
    44. 44)
      • 16. Vishnu, D., Dhandapani, B., Santhiya, K.: ‘The symbiotic effect of integrated Muraya koenigii extract and surface-modified magnetic microspheres–a green biosorbent for the removal of Cu(II) and Cr(VI) ions from aqueous solutions’, Chem. Eng. Commun., 2019, 6445, (1), pp. 112.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2019.0313
Loading

Related content

content/journals/10.1049/iet-nbt.2019.0313
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading