Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Promising opportunities and potential risk of nanoparticle on the society

The ever-promising opportunities and the uses of NP in our life are increasing but their present and future potential risks on the animals, plants and microorganisms are not well discussed elsewhere. In this review, the authors have systematically discussed the toxic effect of the uses of NP on animals, plants and microorganisms including human health. They have also discussed about the bioaccumulation of these NP in the food chain. Finally, they have provided some possible suggestions for the uses of NP to reduce the detrimental effect on the environment.

References

    1. 1)
      • 103. Asli, S., Neumann, P.M..: ‘Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ., 2009, 32, pp. 577584.
    2. 2)
      • 22. David, S., Shoemaker, M., Haley, B.E.: ‘Abnormal properties of creatine kinase in Alzheimer's disease brain: correlation of reduced enzyme activity and active site photolabeling with aberrant cytosol-membrane partitioning’, Brain Res. Mol. Brain Res., 1998, 54, (2), pp. 276287.
    3. 3)
      • 11. Sharma, H.S., Ali, S.F., Hussain, S.M., et al: ‘Influence of engineered nanoparticles from metals on the blood–brain barrier permeability, cerebral blood flow, brain edema and neurotoxicity. An experimental study in the rat and mice using biochemical and morphological approaches’, J. Nanosci. Nanotechnol.., 2009, 9, (8), pp. 50555072.
    4. 4)
      • 67. Inoue, K., Takano, H.: ‘Facilitating effects of nanoparticles/materials on sensitive immune-related lung disorders’, J. Nanomater., 2011, 2011, Article ID 407402, p. 6.
    5. 5)
      • 109. Hao, Y., Ma, C., Zhang, Z., et al: ‘Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem’, Environ. Pollut.., 2018, 232, pp. 123136.
    6. 6)
      • 77. El-Temsah, Y.S., Joner, E.J.: ‘Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil’, Environ, Toxicol., 2012, 27, (1), pp. 4249.
    7. 7)
      • 2. Yahyaei, B., Pourali, P.: ‘One step conjugation of some chemotherapeutic drugs to the biologically produced gold nanoparticles and assessment of their anticancer effects’, Sci. Rep.., 2019, 9, (1), p. 10242.
    8. 8)
      • 101. Andersen, C.P., King, G., Plocher, M., et al: ‘Germination and early plant development of ten plant species exposed to TiO2 and CeO2 nanoparticles’, Environ. Toxicol. Chem., 2016, 35, pp. 22232229.
    9. 9)
      • 116. Zheng, Y., Hou, L., Liu, M., et al: ‘Effects of silver nanoparticles on nitrification and associated nitrous oxide production in aquatic environments’, Sci. Adv., 2017, 3, (8), p. e1603229.
    10. 10)
      • 31. Zhou, T., Chuang, C.C., Zuo, L.: ‘Molecular characterization of reactive oxygen species in myocardial ischemia-reperfusion injury’, Biomed. Res. Int., 2015, 36, pp. 864946.
    11. 11)
      • 83. Rajput, V.D., Tstitsuashvili, V.S., Sushkova, S.N., et al: ‘Effects of ZnO and CuO nanoparticles on soil, plant and microbial community’. Int. Scientific Conf. XX Dokoutchaev Youth Readings, Saint Petersburg, Russia, UDC 631.416.8 (9), 2017.
    12. 12)
      • 33. Amara, S., Slama, I.B., Omri, K., et al: ‘Effects of nanoparticle zinc oxide on emotional behavior and trace elements homeostasis in rat brain’, Toxicol. Ind. Health., 2015, 31, (12), pp. 12021209.
    13. 13)
      • 48. Bacchetta, R., Santo, N., Fascio, U., et al: ‘Nano-sized CuO, TiO2 and ZnO affect Xenopus laevis development’, Nanotoxicology, 2012, 6, (4), pp. 381398.
    14. 14)
      • 80. Rostami, A.A., Shahsavar, A.: ‘Nano-silver particles eliminate the in vitro contaminations of olive ‘mission’ explants’, Asian J. Plant Sci., 2009, 8, pp. 505509.
    15. 15)
      • 66. Mahon, E., Salvati, A., Baldelli Bombelli, F., et al: ‘Designing the nanoparticle-biomolecule interface for ‘targeting and therapeutic delivery’, J. Control. Release, 2012, 161, (2), pp. 164174.
    16. 16)
      • 13. Trickler, W.J., Lantz, S.M., Schrand, A.M., et al: ‘Effects of copper nanoparticles on rat cerebral microvessel endothelial cells’, Nanomedicine (London), 2012, 7, (6), pp. 835846.
    17. 17)
      • 38. Bu, Q., Yan, G., Deng, P., et al: ‘NMR-based metabonomic study of the sub-acute toxicity of titanium dioxide nanoparticles in rats after oral administration’, Nanotechnology, 2010, 21, (12), p. 125105.
    18. 18)
      • 76. Feng, Y., Cui, X., He, S., et al: ‘The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth’, Environ. Sci. Technol.., 2013, 47, (16), pp. 94969504.
    19. 19)
      • 40. Wierzbicki, M., Sawosz, E., Grodzik, M., et al: ‘Carbon nanoparticles downregulate expression of basic fibroblast growth factor in the heart during embryogenesis’, Int. J. Nanomed., 2013, 8, pp. 34273435.
    20. 20)
      • 85. Shams, M., Yildirim, E., Agar, G., et al: ‘Nitric oxide alleviates copper toxicity in germinating seed and seedling growth of Lactuca sativa L. Notulae Botanicae’, Horti Agrobotanici, 2018, 46, (1), pp. 167172.
    21. 21)
      • 126. Myakonkaya, O., Guibert, C., Eastoe, J., et al: ‘Recovery of nanoparticles made easy’, Langmuir, 2010, 26, (6), pp. 37943797.
    22. 22)
      • 82. Sg, W., Huang, L., Head, J., et al: ‘Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces’, J. Pet. Environ. Biotechnol., 2012, 3, p. 126.
    23. 23)
      • 50. Shaw, B.J., Handy, R.D.: ‘Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions’, Environ. Int., 2011, 37, (6), pp. 10831097.
    24. 24)
      • 65. Wiwanitkit, V., Sereemaspun, A., Rojanathanes, R.: ‘Effect of gold nanoparticles on spermatozoa: the first world report’, Fertil. Steril., 2009, 91, (1), pp. e7e8.
    25. 25)
      • 7. Levard, C., Reinsch, B.C., Michel, F.M., et al: ‘Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate’, Environ. Sci. Technol., 2011, 45, pp. 52605266.
    26. 26)
      • 17. Ebabe Elle, R., Gaillet, S., Vidé, J., et al: ‘Dietary exposure to silver nanoparticles in Sprague–Dawley rats: effects on oxidative stress and inflammation’, Food Chem. Toxicol., 2013, 60, pp. 297301.
    27. 27)
      • 110. Yang, Y., Quensen, J., Mathieu, J., et al: ‘Pyrosequencing reveals higher impact of silver nanoparticles than Ag+ on the microbial community structure of activated sludge’, Water Res.., 2014, 48, pp. 317325.
    28. 28)
      • 63. Refuerzo, J.S., Godin, B., Bishop, K., et al: ‘Size of the nanovectors determines the transplacental passage in pregnancy: study in rats’, Am. J. Obstet. Gynecol., 2011, 204, (6), pp. 546549.
    29. 29)
      • 105. Chen, G., Ma, C., Mukherjee, A.: ‘Tannic acid alleviates bulk and nanoparticle Nd2O3 toxicity in pumpkin: a physiological and molecular response’, Nanotoxicology, 2016, 10, pp. 111.
    30. 30)
      • 78. Savithramma, N., Ankanna, S., Bhumi, G.: ‘Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon’, Nano Vis., 2012, 2, pp. 6168.
    31. 31)
      • 15. González, C., Salazar-García, S., Palestino, G., et al: ‘Effect of 45 nm silver nanoparticles (AgNPs) upon the smooth muscle of rat trachea: role of nitric oxide’, Toxicol. Lett., 2011, 207, (3), pp. 306313.
    32. 32)
      • 43. Trickler, W.J., Lantz-Mcpeak, S.M., Robinson, B.L., et al: ‘Porcine brain microvessel endothelial cells show proinflammatory response to the size and composition of metallic nanoparticles’, Drug Metab. Rev., 2014, 46, (2), pp. 224231.
    33. 33)
      • 39. Faddah, L.M., Abdel Baky, N.A., Al-Rasheed, N.M.: ‘Biochemical responses of nanosize titanium dioxide in the heart of rats following administration of idepenone and quercetin’, Afr. J. Pharm. Pharmacol., 2013, 7, (38), pp. 26392651.
    34. 34)
      • 102. Martínez-Fernández, D., Komárek, M.: ‘Comparative effects of nanoscale zero-valent iron (nZVI) and Fe2O3 nanoparticles on root hydraulic conductivity of Solanum lycopersicum L’, Environ. Exp. Bot.., 2016, 131, pp. 128136.
    35. 35)
      • 84. Stampoulis, D., Sinha, S.K., White, J.C.: ‘Assay-dependent phytotoxicity of nanoparticles to plants’, Environ. Sci. Technol.., 2009, 43, (24), pp. 94739479.
    36. 36)
      • 115. Fajardo, C., Ortíz, L.T., Rodríguez-Membibre, M.L., et al: ‘Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: a molecular approach’, Chemosphere., 2012, 86, (8), pp. 802808.
    37. 37)
      • 51. Warheit, D.B., Laurence, B.R., Reed, K.L., et al: ‘Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats’, Toxicol. Sci., 2004, 77, (1), pp. 117125.
    38. 38)
      • 118. Izabela, J., Patryk, O., Barbara, F.: ‘The effect of inorganic nanoparticles (ZnO, Cr2O3, CuO and Ni) and their bulk counterparts on enzyme activities in different soils’, Geoderma, 2014, 232–234, pp. 528537.
    39. 39)
      • 114. Mukherjee, A., Majumdar, S., Servin, A.D.: ‘Carbon nanomaterials in agriculture: a critical review’, Front Plant Sci., 2016, 7, p. 172.
    40. 40)
      • 104. Ghodake, G., Seo, Y.D., Lee, D.E.: ‘Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa’, J. Hazard. Mater., 2011, 186, pp. 952955.
    41. 41)
      • 16. Hussain, S.M., Javorina, A.K., Schrand, A.M., et al: ‘The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion’, Toxicol. Sci., 2006, 92, (2), pp. 456463.
    42. 42)
      • 42. Xu, L., Shao, A., Zhao, Y., et al: ‘Neurotoxicity of silver nanoparticles in rat brain after intragastric exposure’, J. Nanosci. Nanotechnol.., 2015, 15, (6), pp. 42154223.
    43. 43)
      • 81. Adhikari, T., Kundu, S., Biswas, A., et al: ‘Effect of copper oxide nanoparticle on seed germination of selected crops’, J. Agric. Sci. Technol., 2012, 2, pp. 815823.
    44. 44)
      • 12. Sharma, H.S., Ali, S.F., Tian, Z.R., et al: ‘Chronic treatment with nanoparticles exacerbate hyperthermia induced blood–brain barrier breakdown, cognitive dysfunction and brain pathology in the rat neuroprotective effects of nanowired-antioxidant compound H-290/51’, J. Nanosci. Nanotechnol., 2009, 9, (8), pp. 50735090.
    45. 45)
      • 106. Steudle, E., Peterson, C.A..: ‘How does water get through roots?’, J. Exp. Bot., 1988, 49, pp. 775788.
    46. 46)
      • 121. Waalewijn-Kool, P.L., Klein, K., Forniés, R.M., et al: ‘Bioaccumulation and toxicity of silver nanoparticles and silver nitrate to the soil arthropod Folsomia candida’, Ecotoxicology, 2014, 23, (9), pp. 16291637.
    47. 47)
      • 21. Kim, J., Amante, D.J., Moody, J.P., et al: ‘Reduced creatine kinase as a central and peripheral biomarker in Huntington's disease’, Biochim. Biophys. Acta, 2010, 1802, (7–8), pp. 673681.
    48. 48)
      • 14. Trickler, W.J., Lantz, S.M., Murdock, R.C., et al: ‘Silver nanoparticle induced blood–brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells’, Toxicol. Sci., 2010, 118, (1), pp. 160170.
    49. 49)
      • 74. Vinković, T., Novák, O., Strnad, M., et al: ‘Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles’, Environ. Res., 2017, 156, pp. 1018.
    50. 50)
      • 35. Chen, J., Dong, X., Xin, Y., et al: ‘Effects of titanium dioxide nano-particles on growth and some histological parameters of zebrafish (Danio rerio) after a long-term exposure’, Aquat. Toxicol., 2011, 101, (3–4), pp. 493499.
    51. 51)
      • 6. Lowry, G.V., Gregory, K.B., Apte, S.C., et al: ‘Transformations of nanomaterials in the environment’, Environ. Sci. Technol.., 2012, 46, (13), pp. 68936899.
    52. 52)
      • 61. Takeda, K., Suzuki, K.I., Ishihara, A., et al: ‘Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems’, J. Health Sci., 2009, 55, pp. 95102.
    53. 53)
      • 32. Bessemer, R.A., Butler, K.M., Tunnah, L., et al: ‘Cardiorespiratory toxicity of environmentally relevant zinc oxide nanoparticles in the freshwater fish Catostomus commersonii’, Nanotoxicology, 2015, 9, (7), pp. 861870.
    54. 54)
      • 93. Moya, , Cerovic, Z.G.: ‘Advances in photosynthesis and respiration, ed. G. C. Papageorgiou and Govindjee, Springer, Dordrecht, NLD, remote sensing of chlorophyll fluorescence: instrumentation and analysis’, 2004, 12, pp. 429445.
    55. 55)
      • 1. Barua, S., Mitragotri, S.: ‘Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects’, Nano. Today., 2014, 9, (2), pp. 223243.
    56. 56)
      • 112. Song, W., Zhang, J., Guo, J., et al: ‘Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles’, Toxicol. Lett., 2010, 199, (3), pp. 389397.
    57. 57)
      • 129. Hu, Y.P., Yang, J., Tian, J.W., et al: ‘Green and size-controllable synthesis of photoluminescent carbon nanoparticles from waste plastic bags’, Resour. Adv., 2014, 4, (88), pp. 4716947176.
    58. 58)
      • 62. Chu, M., Wu, Q., Yang, H., et al: ‘Transfer of quantum dots from pregnant mice to pups across the placental barrier’, Small, 2010, 6, (5), pp. 670678.
    59. 59)
      • 88. Lee, W.M., An, Y.J., Yoon, H., et al: ‘Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles’, Environ. Toxicol. Chem., 2008, 27, (9), pp. 19151921.
    60. 60)
      • 58. Gao, G., Ze, Y., Li, B., et al: ‘Ovarian dysfunction and gene-expressed characteristics of female mice caused by long-term exposure to titanium dioxide nanoparticles’, J. Hazard Mater., 2012, 243, pp. 1927.
    61. 61)
      • 8. Gottschalk, F., Nowack, B.: ‘The release of engineered nanomaterials to the environment’, J. Environ. Monit., 2011, 13, (5), pp. 11451155.
    62. 62)
      • 125. Judy, J.D., Unrine, J.M., Bertsch, P.M..: ‘Evidence for biomagnification of gold nanoparticles within a terrestrial food chain’, Environ. Sci. Technol.., 2011, 2, pp. 776781.
    63. 63)
      • 20. Hamman, B.L., Bittl, J.A., Jacobus, W.E., et al: ‘Inhibition of the creatine kinase reaction decreases the contractile reserve of isolated rat hearts’, Am. J. Physiol., 1995, 269, pp. 10301036.
    64. 64)
      • 19. Tomimoto, H., Yamamoto, K., Homburger, H.A., et al: ‘Immunoelectron microscopic investigation of creatine kinase BB-isoenzyme after cerebral ischemia in gerbils’, Acta Neuropathol., 1993, 86, (5), pp. 447455.
    65. 65)
      • 128. Pati, P., McGinnis, S., Vikesland, P.J.: ‘Waste want not: life cycle implications of gold recovery and recycling from nanowaste’, Environ. Sci.-Nano, 2016, 3, (5), pp. 11331143.
    66. 66)
      • 5. Klaine, S.J., Alvarez, P.J., Batley, G.E., et al: ‘Nanomaterials in the environment: behavior, fate, bioavailability, and effects’, Environ. Toxicol. Chem., 2008, 27, (9), pp. 18251851.
    67. 67)
      • 96. Nair, P.M., Chung, I.M..: ‘A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells’, Biol. Trace Elem. Res., 2014, 162, (1–3), pp. 342352.
    68. 68)
      • 29. Toyokuni, S.: ‘Oxidative stress and cancer: the role of redox regulation’, Biotherapy, 1998, 11, (2–3), pp. 147154.
    69. 69)
      • 113. Schimel, J.P., Schaeffer, S.M..: ‘Microbial control over carbon cycling in soil’, Front Microbiol., 2012, 3, p. 348.
    70. 70)
      • 55. Elder, A., Gelein, R., Silva, V., et al: ‘Translocation of inhaled ultrafine manganese oxide particles to the central nervous system’, Environ. Health Perspect., 2006, 114, (8), pp. 11721178.
    71. 71)
      • 68. Peng, F., Setyawati, M.I., Tee, J.K., et al: ‘Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness’, Nat. Nanotechnol.., 2019, 14, (3), pp. 279286.
    72. 72)
      • 108. Gao, J., Xu, G., Qian, H., et al: ‘Effects of nano-TiO2 on photosynthetic characteristics of Ulmus elongata seedlings’, Environ. Pollut.., 2013, 176, pp. 6370.
    73. 73)
      • 64. Yamashita, K., Yoshioka, Y., Higashisaka, K., et al: ‘Silica and titanium dioxide nanoparticles cause pregnancy complications in mice’, Nat. Nanotechnol.., 2011, 6, (5), pp. 321328.
    74. 74)
      • 49. Farmen, E., Mikkelsen, H.N., Evensen, Ø., et al: ‘Acute and sublethal effects in juvenile Atlantic salmon exposed to low μg/L concentrations of Ag nanoparticles’, Aquat. Toxicol., 2012, 108, pp. 7884.
    75. 75)
      • 127. Myakonkaya, O., Hu, Z.Y., Nazar, M.F., et al: ‘Recycling functional colloids and nanoparticles’, Chemistry-aEuropean J., 2010, 16, (39), pp. 1178411790.
    76. 76)
      • 53. Grubek-Jaworska, H., Nejman, P., Czuminska, K., et al: ‘Preliminary results on the pathogenic effects of intratracheal exposure to one-dimensional nanocarbons’, Carbon, 2006, 44, pp. 10571063.
    77. 77)
      • 73. Tripathi, D.K., Singh, S., Singh, S., et al: ‘Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings’, Plant Physiol. Biochem.., 2017, 110, pp. 167177.
    78. 78)
      • 24. Crosera, M., Bovenzi, M., Maina, G., et al: ‘Nanoparticle dermal absorption and toxicity: a review of the literature’, Int. Arch. Occup. Environ. Health., 2009, 82, (9), pp. 10431055.
    79. 79)
      • 36. Sheng, L., Wang, X., Sang, X., et al: ‘Cardiac oxidative damage in mice following exposure to nanoparticulate titanium dioxide’, J. Biomed. Mater. Res. A, 2013, 101, (11), pp. 32383246.
    80. 80)
      • 60. Sumner, S.C., Fennell, T.R., Snyder, R.W., et al: ‘Distribution of carbon-14 labeled C60 ([14C]C60) in the pregnant and in the lactating dam and the effect of C60 exposure on the biochemical profile of urine’, J. Appl. Toxicol., 2010, 30, (4), pp. 354360.
    81. 81)
      • 37. Duan, Y., Liu, H., Zhao, J., et al: ‘The effects of nano-anatase TiO(2) on the activation of lactate dehydrogenase from rat heart’, Biol. Trace Elem. Res., 2009, 130, (2), pp. 162171.
    82. 82)
      • 132. Bacher, J., Wahlström, M.: ‘Release of nanoparticles from selected products in landfill conditions in preparation’, 2014.
    83. 83)
      • 75. Vishwakarma, K., Shweta, , Upadhyay, N., et al: ‘Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO(3)) on brassica sp’, Front Plant Sci., 2017, 8, p. 1501.
    84. 84)
      • 59. Li, C., Li, X., Suzuki, A.K., et al: ‘Effects of exposure to nanoparticle-rich diesel exhaust on pregnancy in rats’, J. Reprod. Dev., 2013, 59, (2), pp. 145150.
    85. 85)
      • 95. Singh, A., Singh, N.B., Hussain, I., et al: ‘Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis’, J. Biotechnol., 2017, 262, pp. 1127.
    86. 86)
      • 18. Sarhan, O.M.M., Hussein, R.M.: ‘Effects of intraperitoneally injected silver nanoparticles on histological structures and blood parameters in the albino rat’, Int. J. Nanomed., 2014, 9, pp. 15051517.
    87. 87)
      • 9. Nakajima, H., Ozaki, K., Hongyo, T., et al: ‘A rapid and easy method for the qualitative detection of intracellular deposition of inhaled nanoparticles’, Nanomedicine, 2011, 7, (6), pp. 881888.
    88. 88)
      • 89. Krishnaraj, C., Jagan, E.G., Ramachandran, R., et al: ‘Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. Plant growth metabolism’, Process Biochem., 2012, 47, pp. 651658.
    89. 89)
      • 52. Lam, C.W., James, J.T., McCluskey, R., et al: ‘Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation’, Toxicol. Sci., 2004, 77, (1), pp. 126134.
    90. 90)
      • 100. Nhan, L.V., Yukui, R., Weidong, C.: ‘Toxicity and bio-effects of CuO nanoparticles on transgenic ipt-cotton’, J. Plant Inter., 2016, 11, pp. 108116.
    91. 91)
      • 41. Coradeghini, R., Gioria, S., García, C.P., et al: ‘Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts’, Toxicol. Lett., 2013, 217, (3), pp. 205216.
    92. 92)
      • 120. Chavan, S., Vigneshwaran, N.: ‘Effects of nanoparticles on plant growth-promoting bacteria in Indian agricultural soil’, Agronomy, 2019, 9, (3), p. 140.
    93. 93)
      • 87. Dimkpa, C., McLean, O., Latta, J.E., et al: ‘Cuo and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sandgrown wheat’, J. Nanopart. Res., 2012, 14, p. 1125.
    94. 94)
      • 44. Lapied, E., Moudilou, E., Exbrayat, J.M., et al: ‘Silver nanoparticle exposure causes apoptotic response in the earthworm Lumbricus terrestris (Oligochaeta)’, Nanomedicine (Lond)., 2010, 5, (6), pp. 975984.
    95. 95)
      • 119. Muthuraman, P., Doo Hwan, K.: ‘In vitro toxicity of zinc oxide nanoparticles: a review’, J. Nanopart Res., 2015, 17, pp. 158162.
    96. 96)
      • 3. Taghavi, S.M., Momenpour, M., Azarian, M., et al: ‘Effects of nanoparticles on the environment and outdoor workplaces’, Electron. Physician., 2013, 5, (4), pp. 706712.
    97. 97)
      • 4. Mueller, N.C., Nowack, B.: ‘Exposure modeling of engineered nanoparticles in the environment’, Environ. Sci. Technol.., 2008, 42, (12), pp. 44474453.
    98. 98)
      • 90. Sweet, M.J., Singleton, I.: ‘Soil contamination with silver nanoparticles reduces bishop pine growth and ectomycorrhizal diversity on pine roots’, J. Nanopart Res., 2015, 17, (11), p. 448.
    99. 99)
      • 130. Rajarao, R., Ferreira, R., Sadi, S.H.F., et al: ‘Synthesis of silicon carbide nanoparticles by using electronic waste as a carbon source’, Mater. Lett., 2014, 120, pp. 6568.
    100. 100)
      • 98. Siegel, J., Záruba, K., Švorčík, V., et al: ‘Round-shape gold nanoparticles: effect of particle size and concentration on Arabidopsis thaliana root growth’, Nanoscale Res. Lett., 2018, 13, (1), p. 95.
    101. 101)
      • 123. Zhu, X., Wang, J., Zhang, X., et al: ‘Trophic transfer of TiO2 nanoparticles from daphnia to zebrafish in a simplified fresh water food chain’, Chemosphere, 2014, 79, pp. 928933.
    102. 102)
      • 97. Ebbs, S.D., Bradfield, S.J., Kumar, P., et al: ‘Projected dietary intake of zinc, copper, and cerium from consumption of carrot (Daucus carota) exposed to metal oxide nanoparticles or metal ions’, Front Plant Sci., 2016, 7, p. 188.
    103. 103)
      • 117. Choi, O., Hu, Z.: ‘Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria’, Environ. Sci. Technol.., 2008, 42, (12), pp. 45834588.
    104. 104)
      • 28. Xie, H., Mason, M.M., Wise, J.P., et al: ‘Genotoxicity of metal nanoparticles’, Rev. Environ. Health., 2011, 26, (4), pp. 251268.
    105. 105)
      • 131. Roes, L., Patel, M.K., Worrell, E., et al: ‘Preliminary evaluation of risks related to waste incineration of polymer nanocomposites’, Sci. Total Environ.., 2012, 15, pp. 7686.
    106. 106)
      • 70. Mirzajani, F., Askari, H., Hamzelou, S., et al: ‘Effect of silver nanoparticles on Oryza sativa L. And its rhizosphere bacteria’, Ecotoxicol. Environ. Saf., 2013, 88, pp. 4854.
    107. 107)
      • 25. Kim, S., Lim, Y.T., Soltesz, E.G., et al: ‘Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping’, Nat. Biotechnol., 2004, 22, (1), pp. 9397.
    108. 108)
      • 122. Jakubiak, M., Giska, I., Asztemborska, M., et al: ‘Bioaccumulation and biosorption of inorganic nanoparticles: factors affecting the efficiency of nanoparticle my co extraction by liquid-grown mycelia of pleurotus eryngii and trametes versicolor’, Mycol Progress, 2014, 13, pp. 525532.
    109. 109)
      • 92. Torres, R., Diz, V.E., Lagorio, M.G.: ‘Effects of gold nanoparticles on the photophysical and photosynthetic parameters of leaves and chloroplasts’, Photochem. Photobiol. Sci., 2018, 17, (4), pp. 505516.
    110. 110)
      • 26. Powell, J.J., Faria, N., Thomas-McKay, E., et al: ‘Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract’, J. Autoimmun., 2010, 35, (3), pp. J226J233.
    111. 111)
      • 94. Nair, P.M., Chung, I.M.: ‘Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.)’, Ecotoxicol. Environ. Saf., 2015, 113, pp. 302313.
    112. 112)
      • 56. Pandey, R.K., Prajapati, V.K..: ‘Molecular and immunological toxic effects of nanoparticles’, Int. J. Biol. Macromol., 2018, 107, pp. 12781293.
    113. 113)
      • 99. Shaw, A.K., Ghosh, S., Kalaji, H.M., et al: ‘Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.)’, Environ. Exp. Bot., 2014, 102, pp. 3747.
    114. 114)
      • 54. Takenaka, S., Karg, E., Kreyling, W., et al: ‘Fate and toxic effects of inhaled ultrafine cadmium oxide particles in the rat lung’, Inhalation Toxicol., 2004, 16, pp. 8392.
    115. 115)
      • 57. Semmler-Behnke, M., Lipka, J., Wenk, A., et al: ‘Size dependent translocation and fetal accumulation of gold nanoparticles from maternal blood in the rat’, Part Fibre Toxicol., 2014, 11, p. 33.
    116. 116)
      • 45. Rahman, Q., Lohani, M., Dopp, E., et al: ‘Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts’, Environ. Health Perspect., 2002, 110, (8), pp. 797800.
    117. 117)
      • 72. Qian, H., Peng, X., Han, X., et al: ‘Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana’, J. Environ. Sci.., 2013, 25, (9), pp. 19471955.
    118. 118)
      • 91. Liu, Y., Zhang, Z., Zhang, Q., et al: ‘Biomembrane disruption by silica-core nanoparticles: effect of surface functional group measured using a tethered bilayer lipid membrane’, Biochim. Biophys. Acta, 2014, 1838, (1 Pt B), pp. 429437.
    119. 119)
      • 23. Aksenov, M., Aksenova, M., Butterfield, D.A., et al: ‘Oxidative modification of creatine kinase BB in Alzheimer's disease brain’, J. Neurochem., 2000, 74, (6), pp. 25202527.
    120. 120)
      • 107. Wang, X., Yang, X., Chen, S., et al: ‘Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in arabidopsis’, Front. Plant Sci., 2015, 6, p. 1243.
    121. 121)
      • 27. Jin, Y., Kannan, S., Wu, M., et al: ‘Toxicity of luminescent silica nanoparticles to living cells’, Chem. Res. Toxicol., 2007, 20, pp. 11261133.
    122. 122)
      • 111. Priester, J.H., Van De Werfhorst, L.C., Ge, Y, et al: ‘Effects of TiO2 and Ag nanoparticles on polyhydroxybutyrate biosynthesis by activated sludge bacteria’, Environ. Sci. Technol.., 2014, 48, (24), pp. 1471214720.
    123. 123)
      • 30. Valinluck, V., Sowers, L.C..: ‘Inflammation-mediated cytosine damage: a mechanistic link between inflammation and the epigenetic alterations in human cancers’, Cancer Res., 2007, 67, (12), pp. 55835586.
    124. 124)
      • 10. Liu, Y., Gao, Y., Zhang, L., et al: ‘Potential health impact on mice after nasal instillation of nano-sized copper particles and their translocation in mice’, J. Nanosci. Nanotechnol.., 2009, 9, (11), pp. 63356343.
    125. 125)
      • 86. Hong, J., Rico, C.M., Zhao, L., et al: ‘Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa)’, Environ. Sci. Process Impacts, 2015, 17, (1), pp. 177185.
    126. 126)
      • 71. Dimkpa, C.O., McLean, J.E., Martineau, N., et al: ‘Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix’, Environ. Sci. Technol.., 2013, 47, (2), pp. 10821090.
    127. 127)
      • 124. Unrine, J.M., Aaron Shoults-Wilson, W., Zhurbich, O., et al: ‘Trophic transfer of Au nanoparticles from soil along a simulated terrestrial food chain’, Environ. Sci. Technol.., 2012, 46, (17), pp. 97539760.
    128. 128)
      • 69. Zuverza-Mena, N., Martínez-Fernández, D., Du, W., et al: ‘Exposure of engineered nanomaterials to plants: insights into the physiological and biochemical responses-A review’, Plant Physiol. Biochem.., 2017, 110, pp. 236264.
    129. 129)
      • 79. Zafar, H., Ali, A., Zia, M.: ‘CuO nanoparticles inhibited root growth from Brassica nigra seedlings but induced root from stem and leaf explants’, Appl. Biochem. Biotechnol., 2017, 181, (1), pp. 365378.
    130. 130)
      • 46. Canesi, L., Prochazkova, P.: ‘The invertebrate immune system as a model for investigating the environmental impact of nanoparticles’, in ‘Nanoparticles and the immune system, safety and effects’ (Academic Press, Oxford, UK, 2014), ch. 7, pp. 91112.
    131. 131)
      • 47. Thit, A., Selck, H., Bjerregaard, H.F.: ‘Toxicity of CuO nanoparticles and Cu ions to tight epithelial cells from Xenopus laevis (A6): effects on proliferation, cell cycle progression and cell death’, Toxicol. In Vitro, 2013, 27, (5), pp. 15961601.
    132. 132)
      • 34. Gao, H., Dai, W., Zhao, L., et al: ‘The role of zinc and zinc homeostasis in macrophage function’, J. Immunol. Res., 2018, 6, p. 6872621.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2019.0303
Loading

Related content

content/journals/10.1049/iet-nbt.2019.0303
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address