access icon free Facile synthesis of anisotropic gold nanoparticles and its synergistic effect on breast cancer cell lines

Gold nanoparticles (AuNPs) possess colourful light-scattering properties due to different composition, size and shape. Their unique physical, optical and chemical properties coupled with advantages, have increased the scope of anisotropic AuNPs in various fields. This study reports a green methodology developed for the synthesis of anisotropic AuNPs. The aqueous extracts of Alternanthera sessilis (PGK), Portulaca oleracea (PAK) and Sterculia foetida (SF) with gold ions produced violet, purple and pink coloured AuNPs, respectively, under sonication and room temperature methods revealing the formation of different shapes of AuNPs. The results of TEM analysis of AuNPs confirmed the formation of triangular plate AuNPs of the size 35 nm for PAK extract. Spherical-shaped AuNPs (10–20 nm) were obtained using an extract of PGK. SF extract produced rod, hexagon, pentagon-shaped AuNPs and nanorice gold particles. The cell viability studies of the PGK, PAK and SF-mediated AuNPs on MCF-7 cell lines by MTT assay revealed the cytotoxic activity of AuNPs to depend on the size, shape and the nature of capping agents. The synthesised AuNPs significantly inhibited the growth of cancer cells (MCF-7) in a concentration-dependent manner. The size and shape of these anisotropic AuNPs also reveal its potency to be used as sensors, catalysis, photothermal and therapeutic agents.

Inspec keywords: cellular biophysics; gold; transmission electron microscopy; nanofabrication; catalysis; toxicology; nanoparticles; biological organs; particle size; nanomedicine; biomedical materials; cancer

Other keywords: spherical-shaped AuNP; anisotropic AuNP; temperature 293.0 K to 298.0 K; size 35.0 nm; Portulaca oleracea; gold ions; nanorice gold particles; cell viability; cancer cells; size 10.0 nm to 20.0 nm; triangular plate AuNP; breast cancer cell lines; Sterculia foetida; Au; anisotropic gold nanoparticles; TEM analysis; MCF-7 cell lines; colourful light-scattering properties; SF-mediated AuNP; optical properties; chemical properties; Alternanthera sessilis

Subjects: Low-dimensional structures: growth, structure and nonelectronic properties; Cellular biophysics; Biomedical materials; Nanotechnology applications in biomedicine; Optical properties of metals and metallic alloys (thin films, low-dimensional and nanoscale structures); Other methods of nanofabrication; Heterogeneous catalysis at surfaces and other surface reactions

References

    1. 1)
      • 2. Toshima, N., Yonezawa, T.: ‘Bimetallic nanoparticles – novel materials for chemical and physical applications’, New J. Chem., 1998, 22, pp. 11791201.
    2. 2)
      • 41. Guo, H., Qian, H., Idris, N.M., et al: ‘Singlet oxygen-induced apoptosis of cancer cells using upconversion fluorescent nanoparticles as a carrier of photosensitizer’, Nanomedicine’, 2010, 6, pp. 486495.
    3. 3)
      • 14. Popovtzer, A., Mizrachi, A., Motiei, M., et al: ‘Actively targeted gold nanoparticles as novel radiosensitizer agents: an in vivo head and neck cancer model’, Nanoscale, 2016, 8, pp. 26782685.
    4. 4)
      • 39. Dhas, T.S., Kumar, V.G., Karthick, V., et al: ‘Biosynthesis of gold nanoparticles using Sargassum swartzii and its cytotoxicity effect on HeLa cells’, Spectrochim. Acta A Mol. Biomol Spectrosc., 2014, 133, pp. 102106.
    5. 5)
      • 44. Firdhouse, M.J., Lalitha, P.: ‘Biosynthesis of silver nanoparticles using the extract of Alternanthera sessilis – antiproliferative effect against prostate cancer cells’, Cancer Nano., 2013, 4, pp. 137143.
    6. 6)
      • 7. Naraginti, S., Sivakumar, A.: ‘Eco-friendly synthesis of silver and gold nanoparticles with enhanced bactericidal activity and study of silver catalyzed reduction of 4-nitrophenol’, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 2014, 15, pp. 357362.
    7. 7)
      • 24. Mie, G.: ‘Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions’, Ann. Phys. (Berlin), 1908, 25, pp. 377445.
    8. 8)
      • 40. Kang, B., Mackey, M.A., El-Sayed, M.A.: ‘Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis’, J. Am. Chem. Soc., 2010, 132, pp. 15171519.
    9. 9)
      • 4. Desireddy, A., Conn, B.E., Guo, J., et al: ‘Ultrastable silver nanoparticles’, Nature, 2013, 501, pp. 399402.
    10. 10)
      • 25. Nikoobakht, B., Wang, J., El-Sayed, M.A.: ‘Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition’, Chem. Phys. Lett., 2002, 366, pp. 1723.
    11. 11)
      • 19. Babu, P.J., Saranya, S., Sharma, P., et al: ‘Gold nanoparticles: sonocatalytic synthesis using ethanolic extract of Andrographis paniculata and functionalization with polycaprolactone-gelatin composites’, Front. Mater. Sci., 2012, 6, pp. 236249.
    12. 12)
      • 18. Dhanemozhi, A.C., Chitra, D.: ‘Synthesis of gold nanoparticles with fruit extract’. Proc. of 3rd World Conf. on Applied Sciences, Engineering & Technology, Kathmandu, Nepal, 2014, pp. 572575, ISBN 13: 978-81-930222-0-7.
    13. 13)
      • 42. Wu, S., Zhou, X., Yang, X., et al: ‘A rapid green strategy for the synthesis of Au ‘meatball’-like nanoparticles using green tea for SERS applications’, J. Nanoparticle Res., 2014, 16, pp. 113.
    14. 14)
      • 46. Firdhouse, M.J., Lalitha, P.: ‘Flower-shaped gold nanoparticles synthesized using Kedrostis foetidissima and their antiproliferative activity against bone cancer cell lines’, Int. J. Ind. Chem., 2016, 7, (4), pp. 347358.
    15. 15)
      • 23. Palomba, S., Novotny, L., Palmer, R.E.: ‘Blue-shifted plasmon resonance of individual size selected gold nanoparticles’, Opt. Commun., 2008, 281, pp. 480483.
    16. 16)
      • 31. Dharmatti, R., Phadke, C., Mewada, A., et al: ‘Biogenic gold nanotriangles: cargos for anticancer drug delivery’, Mater. Sci. Eng. C, 2014, 44, pp. 9298.
    17. 17)
      • 13. Bucharskaya, A., Maslyakova, G., Terentyuk, G., et al: ‘Towards effective photothermal/photodynamic treatment using plasmonic gold nanoparticles’, Int. J. Mol. Sci., 2016, 17, pp. 126.
    18. 18)
      • 38. Selim, M.E., Hendi, A.A.: ‘Gold nanoparticles induce apoptosis in MCF-7 human breast cancer cells’, Asian Pac. J. Cancer Prev., 2012, 13, pp. 16171620.
    19. 19)
      • 12. Millstone, J.E., Hurst, S.J., Métraux, G.S., et al: ‘Colloidal gold and silver triangular nanoprisms’, Small, 2009, 5, pp. 646664.
    20. 20)
      • 9. Tiwari, S.: ‘Plants: a rich source of herbal medicine’, J. Nat. Prod., 2008, 1, pp. 2735.
    21. 21)
      • 26. Verma, V.C., Singh, S.K., Solanki, R., et al: ‘Biofabrication of anisotropic gold nanotriangles using extract of endophytic Aspergillus clavatus as a dual functional reductant and stabilizer’, Nanoscale Res. Lett., 2011, 6, pp. 17.
    22. 22)
      • 45. Firdhouse, M.J., Lalitha, P.: ‘Apoptotic efficacy of biogenic silver nanoparticles on human breast cancer MCF-7 cell lines’, Prog Biomater., 2015, 4, pp. 113121.
    23. 23)
      • 11. Hu, M., Chen, J., Li, Z., et al: ‘Gold nanostructures: engineering their plasmonic properties for biomedical applications’, Chem. Soc. Rev., 2006, 35, pp. 10841094.
    24. 24)
      • 27. Dhas, T.S., Kumar, V.G., Abraham, L.S., et al: ‘Sargassum myriocystum mediated biosynthesis of gold nanoparticles’, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 2012, 99, pp. 97101.
    25. 25)
      • 34. Zheng, Y., Tao, J., Liu, H., et al: ‘Facile synthesis of gold nanorice enclosed by high index facets and its application for CO oxidation’, Small, 2011, 7, pp. 23072312.
    26. 26)
      • 10. Mittal, A.K., Chisti, Y., Banerjee, U.C.: ‘Synthesis of metallic nanoparticles using plant extracts’, Biotechnol. Adv., 2013, 31, pp. 346356.
    27. 27)
      • 17. Malik, P., Shankar, R., Malik, V., et al: ‘Green chemistry based benign routes for nanoparticle synthesis’, J. Nanoparticle, 2014, Article ID 30242, p. 6.
    28. 28)
      • 5. Mishra, B., Patel, B.B., Tiwari, S.: ‘Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery’, Nanomed. Nanotechnol. Biol. Med., 2010, 6, pp. 924.
    29. 29)
      • 22. Myroshnychenko, V., Rodríguez-Fernandez, J., Pastoriza-Santos, I., et al: ‘Modelling the optical response of gold nanoparticles’, Chem. Soc. Rev., 2008, 37, pp. 17921805.
    30. 30)
      • 8. Cragg, G.M., Newman, D.J., Snader, K.M.: ‘Natural products in drug discovery and development’, J. Nat. Prod., 1997, 60, pp. 5260.
    31. 31)
      • 30. Singh, C., Baboota, R.K., Naik, P.K., et alBiocompatible synthesis of silver and gold nanoparticles using leaf extract of Dalbergia sissoo’, Adv. Mater. Lett., 2012, 3, pp. 279285.
    32. 32)
      • 16. Li, N., Zhao, P., Astruc, D.: ‘Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity’, Angew. Chem., Int. Ed., 2014, 53, pp. 17561789.
    33. 33)
      • 15. Fazal, S., Jayasree, A., Sasidharan, S., et al: ‘Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer’, ACS Appl. Mater. Interfaces, 2014, 6, pp. 80808089.
    34. 34)
      • 6. Abadeer, S.N., Murphy, C.J.: ‘Recent progress in cancer thermal therapy using gold nanoparticles’, J. Phys. Chem. C, 2016, 120, pp. 46914716.
    35. 35)
      • 35. Sinha, T., Ahmaruzzaman, M.: ‘A novel green and template free approach for the synthesis of gold nanorice and its utilization as a catalyst for the degradation of hazardous dye’, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 2015, 142, pp. 266270.
    36. 36)
      • 21. Ringe, E., Langille, M.R., Sohn, K., et al: ‘Plasmon length: a universal parameter to describe size effects in gold nanoparticles’, J. Phys. Chem. Lett., 2012, 3, pp. 14791483.
    37. 37)
      • 43. Babu, P.J., Sharma, P., Kalita, M.C., et al: ‘Green synthesis of biocompatible gold nanoparticles, using Fagopyrum esculentum leaf extract’, Front. Mater. Sci., 2011, 5, pp. 379387.
    38. 38)
      • 33. Wang, H., Brandl, D.W., Le, F., et al: ‘Nanorice: a hybrid plasmonic nanostructures’, Nano Lett., 2006, 6, pp. 827832.
    39. 39)
      • 28. Ankamwar, B., Damie, C., Ahmad, A., et al: ‘Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution’, J. Nanosci. Nanotechnol., 2005, 5, pp. 16651671.
    40. 40)
      • 32. Ghosh, S., Patil, S., Ahire, M., et al: ‘Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential’, J. Nanobiotechnol., 2012, 10, pp. 19.
    41. 41)
      • 20. El-Brolossy, T.A., Abdallah, T., Mohamed, M.B., et al: ‘Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by photoacoustic technique’, Eur. Phys. J. Spec. Top., 2008, 153, pp. 361364.
    42. 42)
      • 3. Iravani, S.: ‘Green synthesis of metal nanoparticles using plants’, Green Chem., 2011, 13, pp. 26382650.
    43. 43)
      • 36. Fragoon, A., Li, J., Zhu, J., et al: ‘Biosynthesis of controllable size and shape gold nanoparticles by blackseed (Nigella sativa) extract’, J. Nanosci. Nanotechnol., 2012, 3, pp. 23372345.
    44. 44)
      • 29. Sujathadevi, P., Banerjee, S., Chowdhury, S.R., et al: ‘Eggshell membrane: a natural biotemplate to synthesize fluorescent gold nanoparticles’, RSC Adv., 2012, 2, pp. 1157811585.
    45. 45)
      • 37. Kuo, C., Chiang, T., Chen, L., et al: ‘Synthesis of highly faceted pentagonal- and hexagonal-shaped gold nanoparticles with controlled sizes by sodium dodecyl sulphate’, Langmuir, 2004, 20, pp. 78207824.
    46. 46)
      • 1. Min, Y., Akbulut, M., Kristiansen, K., et al: ‘The role of interparticle and external forces in nanoparticles assembly’, Nat. Mater., 2008, 7, pp. 527538.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2019.0279
Loading

Related content

content/journals/10.1049/iet-nbt.2019.0279
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading