access icon free Investigating conformational changes of Prefoldin β1 as result of applying external mechanical force without any position constraint

Manipulating molecular scale bio-nanorobots and influencing their behaviour is one of the major challenges of new researches. Many coiled coil type proteins are involved in important biological functions due to physical properties that make them ideal for both nanoscale manipulation and sensing. The Prefoldin beta subunit from Thermococcus strain KS-1(Prefoldin β1) is one of the possible proteins that can serve as a new bio-nano-actuator. Besides having a balanced architecture, Prefoldin β1 can exhibit a wide range of exclusive authorities. In this study, steered molecular dynamics simulation is applied along with the centre of mass pulling and analyses of Prefoldin β1 conformational changes to characterise some of those abilities. Thus, applying external mechanical force without any position constraint shows that it has no movement throughout simulations. This proposes a novel method to capture different sizes and shapes of cargoes. During simulations, each arm was found to be very flexible, allowing it to enlarge its central cavity and capture different cargoes. For a more accurate analysis, the variations in the cavity of nano-actuator are investigated qualitatively and quantitatively with different parameters. Also, the force analysis of the arms can provide us with decent information about the performance of this nano-actuator.

Inspec keywords: proteins; molecular biophysics; microrobots; biological techniques; molecular dynamics method; nanobiotechnology

Other keywords: steered molecular dynamics simulation; coiled coil type proteins; centre-of-mass pulling; prefoldin beta subunit; external mechanical force; bionanoactuator; nanoscale manipulation; prefoldin β1 conformational changes; Thermococcus strain KS-1; molecular scale bionanorobots

Subjects: Biophysical instrumentation and techniques; Macromolecular conformation (statistics and dynamics); Biomolecular dynamics, molecular probes, molecular pattern recognition; Biomolecular structure, configuration, conformation, and active sites

References

    1. 1)
      • 9. Sharma, G., Mavroidis, C., Rage, K., et al: ‘Computational studies of a protein-based nanoactuator for nanogripping applications’, Int. J. Rob. Res., 2009, 28, (4), pp. 421435.
    2. 2)
      • 22. Geissler, S., Siegers, K., Schiebel, E.: ‘A novel protein complex promoting formation of functional alpha- and gamma-tubulin’, EMBO J., 1998, 17, pp. 952966.
    3. 3)
      • 20. Ghaffari, A., Shokuhfar, A., Hasanzadeh Ghasemi, R.: ‘Prefoldin: A nano actuator for carrying the various size nano drugs’, J. Comput. Theor. Nanosci., 2011, 8, pp. 19.
    4. 4)
      • 2. Askarian, M, Moavenian, M., Hasanzadeh Ghasemi, R.: ‘Prefoldin β1: a new bio-nanorobots component’, J. Adv. Sci. Eng. Med., 2013, 5, pp. 110.
    5. 5)
      • 8. Ghaffari, A., Shokuhfar, A., Hasanzadeh Ghasemi, R.: ‘Capturing and releasing a nano cargo by prefoldin nano actuator’, Sensors Actuators B Chem., 2012, 171–172, pp. 11991206.
    6. 6)
      • 28. Caflisch, A., Pac, E.: ‘Molecular dynamics simulations to study protein folding and unfolding’, in Buchner, J., Kiefhaber, T. (Eds.): ‘Protein folding handbook’ (Wiley-VCH, Germany, 2005) pp. 11431169.
    7. 7)
      • 23. Vainberg, I.E., Lewis, S.A., Rommelaere, H., et al: ‘Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin’, Cell, 1998, 93, pp. 863873.
    8. 8)
      • 31. Keramati, M., Hasanzadeh Ghasemi, R.: ‘A molecular dynamics investigation of the effects of mutation on prefoldin nano actuator in inhibiting amyloid β42-dimer’, Sens. Actuators, B, 2017, 248, pp. 536544.
    9. 9)
      • 16. Kazerounian, K.: ‘Is design of new drugs a challenge for Kinematics?’. Proc. of the Eighth Int. Conf. Advance Robot Kinematics (ARK), Caldes de Malavella, Spain, 2002, pp. 2428.
    10. 10)
      • 26. Mykuliak, V.V., Booth, J.J., Shalashilin, D.V., et al: ‘Talin rod mechanical unfolding: in silico study using both boxed and steered molecular dynamics’, Biophys. J., 2020, 118, pp. 110.
    11. 11)
      • 21. Ghaffari, A., Shokuhfar, A., Hasanzadeh Ghasemi, R.: ‘Design and simulation of a novel bio nano actuator by prefoldin’. Tenth IEEE Conf. on Nanotechnology, South Korea, Seoul, 2010, pp. 885888.
    12. 12)
      • 10. Dubey, A., Mavroidis, C., Tomassone, M.S.: ‘Molecular dynamic studies of viral-protein based nano-actuators’, J. Comput. Theor. Nanosci., 2006, 3, (6), pp. 113.
    13. 13)
      • 5. Fletcher, M., Biglarbegian, M., Neethirajan, S.: ‘Intelligent system design for bionanorobots in drug delivery’, Cancer. Nanotechnol., 2013, 4, pp. 117125.
    14. 14)
      • 13. Hamdi, M., Ferreira, A., Sharma, G., et al: ‘Prototyping bio-nanorobots using molecular dynamics simulation and virtual reality’, Microelectron. J., 2008, 39, (2), pp. 190201.
    15. 15)
      • 35. Available at http://www.rcsb.org.
    16. 16)
      • 30. Hasanzadeh Ghasemi, R., Keramati, M.: ‘Design a protein gripper to capture a hydrophobic cargo’, IET Nanobiotechnol., 2019, 13, (5), pp. 9096.
    17. 17)
      • 19. Yoshida, T., Kanzaki, T., Komada, R.I.T., et al: ‘Contribution of the C-terminal region to the thermostability of the archaeal group II chaperonin from Thermococcus sp. Strain KS-1’, Extremophiles, 2006, 10, pp. 451459.
    18. 18)
      • 24. Pockley, A.: ‘Molecular chaperones and cell signaling’ (Cambridge University Press, Cambridge, 2005).
    19. 19)
      • 17. Kida, H., Sugano, Y., Iizuka, R., et al: ‘Structural and molecular characterization of the prefoldin β subunit from thermococcus strain KS-1’, J. Mol. Biol, 2008, 383, pp. 465474.
    20. 20)
      • 18. Okochi, M., Yoshid, T., Maruyama, T., et al: ‘Pyrococcus prefoldin stabilizes protein-folding intermediates and transfers them, to chaperonins for correct folding’, Biochem. Biophys. Res. Commun., 2002, 291, pp. 769774.
    21. 21)
      • 7. Malik, P., Katyal, V., Malik, V., et al: ‘Nanobiosensors: concepts and variations international scholarly research’, Notices, 2013, 2013, pp. 19.
    22. 22)
      • 33. Kerrigan, J.E.: ‘GROMACS tutorial for drug–enzyme complex’. IST/Academic Computing Services RWJMS, University of Medicine and Dentistry of NJ.
    23. 23)
      • 27. Do, P.C., Lee, E.H., Le, L., ‘Steered molecular dynamics simulation in rational drug design’, J. Chem. Inf. Model., 2018, 58, pp. 14731482.
    24. 24)
      • 25. Hasanzadeh Ghasemi, R., Keramati, M., Mojarrad, M.S.: ‘The effect of structure on improvement of the PNA Young modulus: a study of steered molecular dynamics’, Comput. Biol. Chem., 2019, 83, pp. 15.
    25. 25)
      • 34. Kerrigan, J.E.: ‘GROMACS introductory tutorial GROMACS V 4.5.4, AST/IST’. University of Medicine and Dentistry, NJ.
    26. 26)
      • 4. Singh, A.V., Dad Ansari, M.H., Laux, P., et al: ‘Micro-nanorobots: important considerations when developing novel drug delivery platforms’, Expert Opin. Drug Delivery, 2019, 16, (11), pp. 12591275.
    27. 27)
      • 1. Shokuhfar, A., Ghaffari, A., Hasanzadeh Ghasemi, R.: ‘Cavity control of prefoldin nano actuator (PNA) by temperature and pH’, Nano-Micro Lett., 2012, 4, pp. 110117.
    28. 28)
      • 6. Cavalcanti, A., Shirinzadeh, B., Freitas, R.A., et al: ‘Nanorobot architecture for medical target identification’, Nanotechnology, 2008, 19, pp. 115.
    29. 29)
      • 14. Sharma, G., Badescu, M., Dubey, A., et al: ‘Kinematics and workspace analysis of protein based nano-actuators’, Trans. the ASME, 2005, 127, pp. 718727.
    30. 30)
      • 29. Keramati, M., Hasanzadeh Ghasemi, R.: ‘Study of interaction between prefoldin nano actuator and amyloid beta dimeric pathogenetic cargo with MD simulation’, Modares Mech. Eng., 2016, 16, pp. 385391.
    31. 31)
      • 32. Adcock, S.A., McCammon, J.A.: ‘Survey of methods for simulating the activity of proteins’, Chem. Rev., 2006, 106, pp. 15891615.
    32. 32)
      • 11. Dubey, A., Sharma, G., Mavroidis, C., et al: ‘Dynamics and kinematics of viral protein linear nano-actuators for bio-nano robotic systems’. Proc. IEEE, Int. Conf. Robotics & Automation, New Orleans, LA, April, 2004.
    33. 33)
      • 12. Block, S.M.: ‘Kinesin what gives?’, Cell, 1998, 93, pp. 58.
    34. 34)
      • 15. Singh, A.V., Laux, P., Luch, A., et al: ‘Bottom-UP assembly of nanorobots: extending synthetic biology to complex material design’, Front Nanosci. Nanotech., 2019, 5, pp. 112.
    35. 35)
      • 3. Hamdi, M., Ferreira, A.: ‘Multiscale design and modeling of protein-based nanomechanisms for nanorobotics’, Int. J. Robot. Res., 2009, 28, (4), pp. 436449.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2019.0265
Loading

Related content

content/journals/10.1049/iet-nbt.2019.0265
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading