access icon free Wing-kinematics measurement and flight modelling of the bamboo weevil C. buqueti

Insects are one of the most agile flyers in nature, and studying the kinematics of their wings can provide important data for the design of insect-like wing-flapping micro aerial vehicles. This study integrates high-speed photogrammetry and three-dimensional (3D) force measurement system to explore the kinematics of Cyrtotrachelus buqueti during the wing-flapping flight. The tracking point at the wing tip of the hind wing was recorded using high-speed videography. The lift-thrust force characteristic of wing-flapping motion was obtained by the 3D force sensor. Quantitative measurements of wing kinematics show that the wing-flapping pattern of the hind wing of C. buqueti was revealed as a double figure-eight trajectory. The kinematic modelling of the wing-flapping pattern was then established by converting the flapping motion into rotational motion about the pivoting wing base in the reference coordinate system. Moreover, the lift force generated by C. buqueti during the wing-flapping flight is sufficient to support its body weight without the need to use thrust force to compensate for the lack of lift force.

Inspec keywords: video recording; kinematics; photogrammetry; force measurement; force sensors; aerospace components

Other keywords: 3D force measurement system; kinematic modelling; wing-flapping flight; high-speed photogrammetry; insect-like wing-flapping microaerial vehicles; three-dimensional force measurement system; wing kinematics measurement; double figure-eight trajectory; high-speed videography; 3D force sensor; wing-flapping motion pattern; lift-thrust force characteristics; bamboo weevil C. buqueti; pivoting wing base; Cyrtotrachelus buqueti

Subjects: Sensing and detecting devices; Video recording; Sensing devices and transducers; Mechanical variables measurement; Measurement of mechanical variables

References

    1. 1)
      • 2. Sunada, S., Zeng, L.J., Kawachi, K.: ‘The relationship between dragonfly wing structure and torsional deformation’, J. Theor. Biol., 1998, 193, (1), pp. 3945.
    2. 2)
      • 12. Lu, Z., Debiasi, M., Nguyen, Q.V., et al: ‘Bioinspired low-noise wing design for a two-winged flapping-wing micro air vehicle’, AIAA J., 2018, 56, (12), pp. 46974705.
    3. 3)
      • 27. Le, T.Q., Byun, D., Saputra Ko, J.H., et al: ‘Numerical investigation of the aerodynamic characteristics of a hovering coleopteran insect’, J. Theor. Biol., 2010, 266, (4), pp. 485495.
    4. 4)
      • 18. Li, X., Guo, C., Li, L.: ‘Functional morphology and structural characteristics of the hind wings of the bamboo weevil Cyrtotrachelus buqueti (Coleoptera, Curculionidae)’, Anim. Cells Syst., 2019, 23, (2), pp. 143153.
    5. 5)
      • 17. Phan, V.H., Park, H.C.: ‘Generation of control moments in an insect-like tailless flapping-wing micro air vehicle by changing the stroke-plane angle’, J. Bionic Eng., 2016, 13, (3), pp. 449457.
    6. 6)
      • 31. Yang, S., Zhang, W.: ‘Numerical analysis of the three-dimensional aerodynamics of a hovering rufous hummingbird (Selasphorus rufus)’, Acta Mech. Sin., 2015, 31, (6), pp. 931943.
    7. 7)
      • 10. Li, C., Dong, H.: ‘Wing kinematics measurement and aerodynamics of a dragonfly in turning flight’, Bioinspir. Biomim., 2017, 12, (2), p. 026001.
    8. 8)
      • 15. Xiang, J., Du, J., Li, D., et al: ‘Aerodynamic performance of the locust wing in gliding mode at low Reynolds number’, J. Bionic Eng., 2016, 13, (2), pp. 249260.
    9. 9)
      • 6. Dickinson, M.H., Lehmann, F., Sane, S.P.: ‘Wing rotation and the aerodynamic basis of insect flight’, Science, 1999, 284, (5422), pp. 19541960.
    10. 10)
      • 23. Wortmann, M., Zarnack, W.: ‘Wing movements and lift regulation in the flight of desert locusts’, J. Exp. Biol., 1993, 182, (1), pp. 5769.
    11. 11)
      • 22. Srygley, R.B., Thomas, A.L.: ‘Unconventional lift-generating mechanisms in free-flying butterflies’, Nature, 2002, 420, (6916), pp. 660664.
    12. 12)
      • 7. Frantsevich, L., Dai, Z., Wang, W.Y., et al: ‘Geometry of elytra opening and closing in some beetles (Coleoptera, Polyphaga)’, J. Exp. Biol., 2005, 208, (16), pp. 31453158.
    13. 13)
      • 32. Roccia, B., Preidikman, S., Massa, J.C., et al: ‘Modified unsteady vortex-lattice method to study flapping wings in Hover flight’, AIAA J.., 2013, 51, (11), pp. 26282642.
    14. 14)
      • 25. Maybury, W.J., Lehmann, F.: ‘The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings’, J. Exp. Biol., 2004, 207, (26), pp. 47074726.
    15. 15)
      • 5. Wakeling, J.M., Ellington, C.P.: ‘Dragonfly flight. II. Velocities, accelerations and kinematics of flapping flight’, J. Exp. Biol., 1997, 200, (3), pp. 557582.
    16. 16)
      • 21. Zong, W., Wang, Z., Xing, Q., et al: ‘The method of multi-camera layout in motion capture system for diverse small animals’, Appl. Sci., 2018, 8, (9), p. 1562.
    17. 17)
      • 8. Chen, Y., Skote, M., Zhao, Y., et al: ‘Dragonfly (Sympetrum flaveolum) flight: kinematic measurement and modelling’, J. Fluids Struct., 2013, 40, pp. 115126.
    18. 18)
      • 26. Sun, J., Du, R., Liu, X., et al: ‘A simulation of the flight characteristics of the deployable hind wings of beetle’, J. Bionic Eng., 2017, 14, (2), pp. 296306.
    19. 19)
      • 28. Cheng, M., Miao, W., Zhong, C.: ‘Numerical simulation of insect flight’, Appl. Math. Mech., 2006, 27, (5), pp. 601606.
    20. 20)
      • 13. Phan, H.V., Kang, T., Park, H.C.: ‘Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control’, Bioinspir. Biomim., 2017, 12, (3), pp. 117.
    21. 21)
      • 19. Li, X., Guo, C.: ‘Microstructure and material properties of hind wings of a bamboo weevil Cyrtotrachelus buqueti (Coleoptera: Curculionidae)’, Microsc. Res. Tech., 2019, 82, (7), pp. 11021113.
    22. 22)
      • 3. Karásek, M., Muijres, F.T., De Wagter, C., et al: ‘A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns’, Science, 2018, 361, (6407), pp. 10891094.
    23. 23)
      • 9. Cheng, X., Sun, M.: ‘Wing-kinematics measurement and aerodynamics in a small insect in hovering flight’, Sci. Rep., 2016, 6, (1), p. 1.
    24. 24)
      • 29. Prasath, N.G., Rangaraj, V., Mathaiyan, V., et al: ‘Numerical simulation of biology-inspired beetle wings at various flying conditions’. 12th Int. Energy Conversion Engineering Conf., Cleveland, OH, July 2014.
    25. 25)
      • 4. Nguyen, Q.V., Park, H.C., Goo, N.S., et al: ‘Characteristics of a beetle's free flight and a flapping-wing system that mimics beetle flight’, J. Bionic Eng., 2010, 7, (1), pp. 7786.
    26. 26)
      • 24. Sackey, J., Berthier, S., Maaza, M., et al: ‘Comparative study on nanostructured order-disorder in the wing eyespots of the giant owl butterfly, Caligo memnon’, IET Nanobiotechnol., 2018, 12, (7), pp. 951955.
    27. 27)
      • 20. Li, X., Guo, C.: ‘Structural characteristics analysis of the hind wings in a bamboo weevil Cyrtotrachelus buqueti’, IET Nanobiotechnol., 2019, 325, p. 1549.
    28. 28)
      • 1. Ha, N.S., Truong, Q.T., Phan, H.V., et al: ‘Structural characteristics of Allomyrina Dichotoma beetle's hind wings for flapping wing micro air vehicle’, J. Bionic Eng., 2014, 11, (2), pp. 226235.
    29. 29)
      • 30. Nakata, T., Liu, H.: ‘Aerodynamic performance of a hovering hawk moth with flexible wings: a computational approach’, P. R. Soc. B, Biol. Sci., 2012, 279, (1729), pp. 722731.
    30. 30)
      • 33. Sackey, J., Yenus, Z., Maaza, M., et al: ‘Investigation of the morphological cell structures and their optical significances of Aeshna cyanea’, IET Nanobiotechnol., 2019, 137, p. 221.
    31. 31)
      • 16. Au, L.T., Phan, V.H., Park, H.C.: ‘Longitudinal flight dynamic analysis on vertical take-off of a tailless flapping-wing micro air vehicle’, J. Bionic Eng., 2018, 15, (2), pp. 283297.
    32. 32)
      • 14. Meng, X., Liu, Y., Sun, M.: ‘Aerodynamics of ascending flight in fruit flies’, J. Bionic Eng., 2017, 14, (1), pp. 7587.
    33. 33)
      • 11. Wan, H., Dong, H., Gai, K.: ‘Computational investigation of cicada aerodynamics in forward flight’, J. R. Soc., Interface, 2015, 12, (102), p. 20141116.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2019.0261
Loading

Related content

content/journals/10.1049/iet-nbt.2019.0261
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading