Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Facile nano-free electrochemiluminescence biosensor for detection of sulphamethoxazole via tris(2,2′-bipyridyl)ruthenium(II) and N-methyl pyrrolidone recognition

The electrochemiluminescence (ECL) system based on the ruthenium complex has become a powerful tool in the field of analytical chemistry. However, the non-aqueous ECL luminescence system, which does not involve complex nano-modification, has not been widely used for the determination of analytes. In this study, N-methyl pyrrolidone was selected as the solvent, and it could also act as a co-reactant of . Based on this, a simple ECL system without nanomaterials was established. Strong ECL was generated. Furthermore, a quenching effect between the excited state of and sulphamethoxazole (SMZ) was observed. Based on this, a sensitive ECL sensor for detecting SMZ is constructed. A linear relationship between ECL signal quenching intensity (ΔI) and the logarithm of SMZ concentration (log C) in the concentration range of 1 × 10−7–1 × 10−5 mol/l is obtained. The limit of detection is as low as 3.33 × 10−9 mol/l. The method has been applied to the detection of SMZ in tap water samples with different concentration levels with satisfactory results, and the recovery was 95.3–102.6%.

References

    1. 1)
      • 26. Paramasivam, B., Ramki, S., Shen-Ming, C., et al: ‘Voltammetric sensing of sulfamethoxazole using a glassy carbon electrode modified with a graphitic carbon nitride and zinc oxide nanocomposite’, Microchim. Acta, 2018, 185, (8), pp. 396404.
    2. 2)
      • 3. Sun, X., Du, Y., Zhang, L., et al: ‘Luminescent supramolecular microstructures containing Rubpy32+: solution-based self-assembly preparation and solid-state electrochemiluminescence detection application’, Anal. Chem., 2007, 79, (6), pp. 25882592.
    3. 3)
      • 20. Kim, H.J., Jeong, M.H., Park, H.J., et al: ‘Development of an immunoaffinity chromatography and HPLC-UV method for determination of 16 sulfonamides in feed’, Food Chem., 2016, 196, pp. 11441149.
    4. 4)
      • 21. Patze, S., Huebner, U., Liebold, F., et al: ‘SERS as an analytical tool in environmental science: the detection of sulfamethoxazole in the nanomolar range by applying a microfluidic cartridge setup’, Anal. Chim. Acta, 2017, 949, pp. 17.
    5. 5)
      • 24. Jia, F., Zhong, H., Zhang, W., et al: ‘A novel nonenzymatic ECL glucose sensor based on perovskite LaTiO3–Ag 0.1 nanomaterials’, Sens. Actuators, B, 2015, 212, pp. 174182.
    6. 6)
      • 29. Haslag, C.S., Richter, M.M.: ‘Electrogenerated chemiluminescence quenching of Rubpy32+ (bpy = 2,2′-bipyridine) in the presence of Acetaminophen, salicylic acid and their metabolites’, J. Lumin., 2012, 132, (3), pp. 636640.
    7. 7)
      • 34. Chu, Q.C., Tian, X.H., Jiang, L.M., et al: ‘Determination of effective ingredients in compound sulfamethoxazole tablets by capillary electrophoresis with amperometric detection’, Chi. J. Anal. Chem., 2008, 36, (3), pp. 292296.
    8. 8)
      • 12. Li, L., Yu, B., Zhang, X., et al: ‘A novel electrochemiluminescence sensor based on Rubpy32+/N-doped carbon nanodots system for the detection of bisphenol A’, Anal. Chim. Acta, 2014, 895, pp. 104111.
    9. 9)
      • 2. Liu, Z., Qi, W., Xu, G.: ‘Recent advances in electrochemiluminescence’, Chem. Soc. Rev., 2015, 44, (10), pp. 31173142.
    10. 10)
      • 28. Liu, X., Luo, L., Li, L., et al: ‘An electrochemiluminescence aptasensor for analysis of bisphenol A based on carbon nanodots composite as co-reaction of Rubpy32+ nanosheets’, Electrochim. Acta, 2019, 319, pp. 849858.
    11. 11)
      • 6. Yin, X., Sha, B., Zhang, X., et al: ‘The factors affecting the electrochemiluminescence of tris[2,2′-bipyridyl] ruthenium [II]/tertiary amines’, Electroanalysis, 2010, 20, (10), pp. 10851091.
    12. 12)
      • 14. Chen, X., Zhao, L., Tian, X., et al: ‘A novel electrochemiluminescence tetracyclines sensor based on a Ru[bpy]32+-doped silica nanoparticles/nafion film modified electrode’, Talanta, 2014, 129, pp. 2631.
    13. 13)
      • 1. Chen, Y., Zhou, S., Li, L., et al: ‘Nanomaterials-based sensitive electrochemiluminescence biosensing’, Nano Today, 2017, 12, pp. 98115.
    14. 14)
      • 33. Sgobbi, L.F., Razzino, C.A., Machado, S.A.: ‘A disposable electrochemical sensor for simultaneous detection of sulfamethoxazole and trimethoprim antibiotics in urine based on multiwalled nanotubes decorated with Prussian Blue nanocubes modified screen-printed electrode’, Electrochim. Acta, 2016, 191, pp. 10101017.
    15. 15)
      • 22. Hai, Y., Yuan, H., Xiao, D.: ‘High electrochemiluminescence intensity of the Rubpy32+/oxalate system on a platinum net electrode’, Microchim. Acta, 2007, 157, (3–4), pp. 127131.
    16. 16)
      • 10. Cheng, Y., Yuan, R., Chai, Y., et al: ‘Highly enhanced luminol electrochemiluminescence based on L-cysteine film for ultrasensitive immunoassay’, Sens. Lett., 2012, 10, (3), pp. 838844.
    17. 17)
      • 16. Xiong, H., Zheng, X.: ‘Electrochemiluminescence based determination of micro-RNA using target-guided assembly of gold nanoparticles on an electrode modified with nafion, carbon nanotubes and polyvinylpyrrolidone’, Microchim. Acta, 2017, 184, (6), pp. 17811789.
    18. 18)
      • 17. Chen, H., Gao, B., Li, H.: ‘Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide’, J. Hazard. Mater., 2015, 282, pp. 201207.
    19. 19)
      • 4. Tian, L., Zhao, P., Wei, J., et al: ‘Graphitic carbon nitride nanosheets as Co-reactants for tris[2,2′-bipyridine] ruthenium[II] electrochemiluminescence’, ChemElectroChem, 2019, 6, (6), pp. 16731677.
    20. 20)
      • 18. Ji, Y., Ferronato, C., Salvador, A., et al: ‘Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics’, Sci. Total Environ., 2014, 472, pp. 800808.
    21. 21)
      • 11. Dong, Y., Tian, W., Ren, S., et al: ‘Graphene quantum dots/L-cysteine coreactant electrochemiluminescence system and its application in sensing lead[II] ions’, ACS Appl. Mater. Interfaces, 2014, 6, (3), pp. 16461651.
    22. 22)
      • 25. Wu, M., Shi, H., Xu, J., et al: ‘CDS quantum dots/Rubpy32+ electrochemiluminescence resonance energy transfer system for sensitive cytosensing’, Chem. Comm., 2011, 47, (27), pp. 77527754.
    23. 23)
      • 27. Zhao, Y., Yuan, F., Quan, X., et al: ‘An electrochemical sensor for selective determination of sulfamethoxazole in surface water using a molecularly imprinted polymer modified BDD electrode’, Anal. Methods, 2015, 7, (6), pp. 26932698.
    24. 24)
      • 8. Sun, S., Yang, Y., Liu, F., et al: ‘Intra-and intermolecular interaction ECL study of novel ruthenium tris-bipyridyl complexes with different amine reductants’, Dalton Trans., 2009, 238, (38), pp. 79697974.
    25. 25)
      • 32. Rossmann, J., Schubert, S., Gurke, R., et al: ‘Simultaneous determination of most prescribed antibiotics in multiple urban wastewater by SPE-LC–MS/MS’, J. Chromatogr. B, 2014, 969, pp. 162170.
    26. 26)
      • 31. Sun, N., Wu, S., Chen, H., et al: ‘Determination of sulfamethoxazole in milk using molecularly imprinted polymer monolith microextraction coupled to HPLC’, Microchim. Acta, 2012, 179, (1–2), pp. 3340.
    27. 27)
      • 9. Chen, Z., Zu, Y.: ‘Electrogenerated chemiluminescence of the tris[2,2′-bipyridine] ruthenium [II]/tertiary amine systems: effects of electrode surface hydrophobicity on the low-oxidation-potential emission’, J. Phys. Chem. C, 2009, 113, (52), pp. 2187721882.
    28. 28)
      • 30. Peng, Y., Dong, Y.P., Ai, M.M., et al: ‘Electrogenerated chemiluminescence of Ag2Te quantum dots and its application in sensitive detection of catechol’, J. Lumin., 2017, 190, pp. 221227.
    29. 29)
      • 13. Robinson, W.D., Richter, M.M.: ‘Electrogenerated chemiluminescence of tris[2-phenylpyridine]iridium[III] in water, acetonitrile and trifluorethanol’, Luminescence, 2015, 30, (1), pp. 6771.
    30. 30)
      • 23. Chen, Z., Zu, Y.: ‘Electrogenerated chemiluminescence of the tris[2,2′-bipyridine]ruthenium[II]/tri-n-propylamine [TPrA] system: crucial role of the long lifetime of TPrA•+ cation radicals suggested by electrode surface effects’, J. Phys. Chem. C, 2008, 112, (42), pp. 1666316667.
    31. 31)
      • 19. Li, Q., Wang, Y., Cao, H., et al: ‘A novel extraction method for analysing available sulfamethoxazole in soil’, Chem. Ecol., 2019, 35, (3), pp. 284299.
    32. 32)
      • 7. Liu, X., Shi, L., Niu, W., et al: ‘Environmentally friendly and highly sensitive ruthenium[II] tris[2,2′-bipyridyl]electrochemiluminescent system using 2-[dibutylamino] ethanol as co-reactant’, Angew. Chem., 2007, 119, (3), pp. 425428.
    33. 33)
      • 15. Zhang, A., Guo, W., Ke, H., et al: ‘Sandwich-format ECL immunosensor based on Au star@ BSA-luminol nanocomposites for determination of human chorionic gonadotropin’, Biosens. Bioelectron., 2018, 101, pp. 219226.
    34. 34)
      • 5. Zheng, L., Wang, B. B., Chi, Y. W., et al: ‘Using stannous ion as an excellent inorganic ECL coreactant for tris[2,2′-bipyridyl]ruthenium[II]’, Dalton Trans., 2012, 41, (5), pp. 16301634.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2019.0257
Loading

Related content

content/journals/10.1049/iet-nbt.2019.0257
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address