access icon free Preparation and characterisation of silica-based nanoparticles for cisplatin release on cancer brain cells

In the present work, the preparation, characterisation, and efficiency of two different silica nanostructures as release vehicles of Cisplatin are reported. The 1-hexadeciltrimethyl-ammonium bromide templating agent was used to obtain mesoporous silica nanoparticles which were later loaded with Cisplatin. While sol–gel silica was very fast prepared using an excess of acetic acid during the hydrolysis–condensation reactions of tetraethylorthosilicate and at the same time the Cisplatin was added. Several physicochemical techniques including spectroscopies, electronic microscopy, X-ray diffraction, N2 adsorption–desorption were used to characterise the silica nanostructures. An in vitro Cisplatin release test was carried out using artificial cerebrospinal fluid. Finally, the toxicity of all silica nanostructures was tested using the C6 cancer cell line. The spectroscopic results showed the suitable stabilisation of Cisplatin into the two different silica nanostructures. A large surface area was obtained for the mesoporous silica nanoparticles, while low areas were obtained in the silica nanoparticles. Cisplatin was released faster from mesoporous silica channels than from inside of aggregates nanoparticles silica. Cisplatin alone, as well as, cisplatin released from both silica nanostructures exerted a toxic effect on cancer cells. In contrast, both silica structures without the drug did not exert any toxic effect.

Inspec keywords: desorption; nanomedicine; biomedical materials; adsorption; nanofabrication; condensation; toxicology; sol-gel processing; drugs; nanoparticles; cancer; cellular biophysics; aggregates (materials); brain; silicon compounds; mesoporous materials; X-ray diffraction

Other keywords: cancer brain cells; SiO2; hydrolysis-condensation reactions; tetraethylorthosilicate; physicochemical techniques; mesoporous silica channels; sol-gel silica; C6 cancer cell line; silica-based nanoparticles; 1-hexadeciltrimethyl-ammonium bromide; acetic acid; toxicity; mesoporous silica nanoparticles; N2 adsorption-desorption; silica nanostructures; electronic microscopy; X-ray diffraction; artificial cerebrospinal fluid; toxic effect; N2; in vitro cisplatin release test

Subjects: Biophysics of neurophysiological processes; Deposition from liquid phases (melts and solutions); Nanofabrication using thin film deposition methods; Nanotechnology applications in biomedicine; Cellular biophysics; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Adsorption and desorption kinetics; evaporation and condensation; Structure of powders and porous materials; Biomedical materials; Sorption and accommodation coefficients (surface chemistry); Low-dimensional structures: growth, structure and nonelectronic properties

References

    1. 1)
      • 34. Düzlü, A.Ü., Günaydın, B., Şüküroğlu, M.K., et al: ‘Release pattern of liposomal bupivacaine in artificial cerebrospinal fluid’, Turk. J. Anaesth. Reanim., 2016, 44, pp. 16.
    2. 2)
      • 11. Ni, X., Hao, J., Zhao, Y., et al: ‘A simple and general approach for the decoration of interior surfaces of silica hollow microspheres with noble metal nanoparticles and their application in catalysis’, Inorg. Chem. Front., 2017, 4, pp. 16341641.
    3. 3)
      • 13. Wang, Y., Zhao, Q., Han, N., et al: ‘Mesoporous silica nanoparticles in drug delivery and biomedical applications’, Nanomed-Nanotechnol., 2015, 11, pp. 313327.
    4. 4)
      • 27. Dasari, S., Tchounwou, P.B.: ‘Cisplatin in cancer therapy: molecular mechanisms of action’, Eur. J. Pharmacol., 2014, 740, pp. 364378.
    5. 5)
      • 17. Amiri, A.: ‘Solid-phase microextraction-based sol-gel technique’, Trends. Analyt. Chem., 2016, 75, pp. 5774.
    6. 6)
      • 32. Arean, C.O., Vesga, M.J., Parra, J.B., et al: ‘Effect of amine and carboxyl functionalization of sub-micrometric MCM-41 spheres on controlled release of cis-Pt’, Ceram. Int., 2013, 39, pp. 74077414.
    7. 7)
      • 1. Wu, D., Hwang, S.J., Zones, S.I., et al: ‘Guest-host interactions of a rigid organic molecule in porous silica frameworks’, Proc. Natl. Acad. Sci., 2014, 11, (5), pp. 17201725.
    8. 8)
      • 19. Wang, F., Li, Z., Liu, D., et al: ‘Synthesis of magnetic mesoporous silica composites via a modified Stöber approach’, J. Porous. Mater., 2014, 21, pp. 513519.
    9. 9)
      • 16. Guo, X., Zhang, Q., Ding, X., et al: ‘Synthesis and application of several sol–gel-derived materials via sol–gel process combining with other technologies: a review’, J. Sol-Gel Sci. Technol., 2016, 79, pp. 328358.
    10. 10)
      • 30. He, Y., Liang, S., Xu, M.L.H.: ‘Mesoporous silica nanoparticles as potential carriers for enhanced drug solubility of paclitaxel’, Mater. Sci. Eng. C., 2017, 78, pp. 1217.
    11. 11)
      • 3. Shin, H.S., Hwang, Y.K., Huh, S.: ‘Facile preparation of ultra-large pore mesoporous silica nanoparticles and their application to the encapsulation of large guest molecules’, ACS Appl. Mater. Interfaces, 2014, 6, pp. 17401746.
    12. 12)
      • 29. Rodrigues Braz, W., Lamec Rocha, N., de Faria, E.H., et al: ‘Incorporation of anti-inflammatory agent into mesoporous silica’, Nanotechnology, 2016, 27, pp. 19.
    13. 13)
      • 31. López, T., Ortiz, E., Gómez, E., et al: ‘Preparation and characterization of kynurenic acid occluded in sol-gel silica and SBA-15 silica as release reservoirs’, J. Nanomater., 2014, 2014, pp. 18.
    14. 14)
      • 35. González Hurtado, M., Rieumont Briones, J., Castro González, L.M., et al: ‘Kinetic studies of the release profiles of antiepileptic drug released from a nanostructured TiO2 matrix’, J. Adv. Chem., 2017, 2, (4), pp. 43654373.
    15. 15)
      • 2. Li, J., Wang, H., Li, H., et al: ‘Mutual interaction between guest drug molecules and host nanoporous silica xerogel studied using central composite design’, Int. J. Pharm., 2016, 498, pp. 3239.
    16. 16)
      • 8. Knežević, N.Ž., Durand, J.O.: ‘Large pore mesoporous silica nanomaterials for application in delivery of biomolecules’, Nanoscale, 2015, 7, pp. 21992209.
    17. 17)
      • 9. Chen, J., Sheng, Y., Song, Y., et al: ‘Multimorphology mesoporous silica nanoparticles for dye adsorption and multicolor luminescence applications’, ACS Sustain. Chem. Eng., 2018, 6, pp. 35333545.
    18. 18)
      • 5. Sriramulu, D., Turag, S.P., Yi, A.X., et al: ‘Synthesis, characterization and application of luminescent silica nanomaterials’, J. Mater. Chem. C, 2016, 4, pp. 1119011197.
    19. 19)
      • 36. Izquierdo-Barba, I., Sousa, E., Doadrio, J.C., et al: ‘Influence of mesoporous structure type on the controlled delivery of drugs: release of ibuprofen from MCM-48, SBA-15 and functionalized SBA-15’, J. Sol-Gel Sci. Technol., 2009, 50, pp. 421429.
    20. 20)
      • 40. Grobben, B., De Deyn, P.P., Slegers, H.: ‘Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion’, Cell. Tissue. Res., 2002, 310, pp. 257270.
    21. 21)
      • 33. De, G., Karmakar, B., Ganguly, D.: ‘Hydrolysis-condensation reactions of TEOS in the presence of acetic acid leading to the generation of glass-like silica microspheres in solution at room temperature’, J. Mater. Chem., 2000, 10, pp. 22892293.
    22. 22)
      • 4. Ramasamy, E., Ramamurthy, V.: ‘Supramolecular-surface photochemistry: assembly and photochemistry of host-guest capsules on silica surface’, Org. Lett., 2018, 20, pp. 41874190.
    23. 23)
      • 18. Kurdyukov, D.A., Eurov, D.A., Kirilenko, D.A., et al: ‘Tailoring the size and microporosity of Stober silica particles’, Microporous Mesoporous Mater., 2018, 258, pp. 205210.
    24. 24)
      • 37. Wang, Y., Sun, L., Jiang, T., et al: ‘The investigation of MCM-48-type and MCM-41-type mesoporous silica as oral solid dispersion carriers for water insoluble cilostazol’, Drug Dev. Ind. Pharm., 2014, 40, (6), pp. 819828.
    25. 25)
      • 21. Sancenon, F., Pascual, L., Oroval, M., et al: ‘Gated silica mesoporous materials in sensing applications’, Chem., 2015, 4, (4), pp. 418437.
    26. 26)
      • 12. Hatami, M., Ahmadipour, M., Asghari, S.: ‘Heterocyclic grafting functionalization of silica nanoparticles: fabrication, morphological investigation and application for PVA nanocomposites’, J. Inorg. Organomet. Polym., 2017, 27, pp. 10721083.
    27. 27)
      • 28. Nairi, V., Medda, L., Monduzzi, M., et al: ‘Adsorption and release of ampicillin antibiotic from ordered mesoporous silica’, J. Colloid. Interface. Sci., 2017, 497, pp. 217225.
    28. 28)
      • 7. Sharma, R.K., Sharma, S., Dutta, S.: ‘Silica-nanosphere-based organic-inorganic hybrid nanomaterials: synthesis, functionalization and applications in catalysis’, Green. Chem., 2015, 17, pp. 32073230.
    29. 29)
      • 38. Shokrzadeh, M., Modanloo, M.: ‘An overview of the most common methods for assessing cell viability’, J. Res. Med. Dent. Sci., 2017, 5, (2), pp. 3341.
    30. 30)
      • 23. Wang, Y., MPharm, Q.Z., Han, N., et al: ‘Mesoporous silica nanoparticles in drug delivery and biomedical applications’, Nanomed-Nanotechnol., 2015, 11, pp. 313327.
    31. 31)
      • 22. Thia, T., Caob, V.D., Nguyenb, T., et al: ‘Functionalized mesoporous silica nanoparticles and biomedical applications’, Mater. Sci. Eng. C, 2019, 99, pp. 631656.
    32. 32)
      • 25. Sengupta, S., Mao, M., Gokaslan, Z.S., et al: ‘Chimeric antigen receptors for treatment of glioblastoma: a practical review of challenges and ways to overcome them’, Cancer Gene Ther., 2017, 24, pp. 121129.
    33. 33)
      • 20. Martínez-Edo, G., Balmori, A., Pontón, I., et al: ‘Functionalized ordered mesoporous silicas (MCM-41): synthesis and applications in catalysis’, Catalysts, 2018, 8, (617), pp. 162.
    34. 34)
      • 26. Li, X., Huang, J.M., Wang, J.N., et al: ‘Combination of chrysin and cisplatin promotes the apoptosis of hep G2 cells by up-regulating p53’, Chem.-Biol. Interact., 2015, 232, pp. 1220.
    35. 35)
      • 14. Available at https://www.fda.gov/food/ingredientspackaginglabeling/gras/scogs/ucm260849.htm, accessed 1 July 2019.
    36. 36)
      • 39. Available at https://www.atcc.org/~/media/DA5285A1F52C414E864C966FD78C9A79.ashx, accessed 1 July 2019.
    37. 37)
      • 6. Lehman, S.E., Larsen, S.C.: ‘Zeolite and mesoporous silica nanomaterials: greener syntheses, environmental applications and biological toxicity’, Environ. Sci. Nano., 2014, 1, pp. 200213.
    38. 38)
      • 24. Conroy, S., Kruyt, F., Joseph, J.V., et al: ‘Subclassification of newly diagnosed glioblastomas through an immunohistochemical approach’, Plos One, 2014, 9, (12), pp. 121.
    39. 39)
      • 15. Singh, L.P., Bhattacharyya, S.K., Kumar, R., et al: ‘Sol-gel processing of silica nanoparticles and their applications’, Adv. Colloid. Intrfac., 2014, 214, pp. 1737.
    40. 40)
      • 10. Gomes, M.C., Cunha, A., Trindade, T., et al: ‘The role of surface functionalization of silica nanoparticles for bioimaging’, J. Innov. Opt. Health Sci., 2016, 9, (4), pp. 116.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2019.0239
Loading

Related content

content/journals/10.1049/iet-nbt.2019.0239
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading