access icon free Tomato response to metal nanoparticles introduction into the nutrient medium

This study is aimed to explore the capacity of metal nanoparticles (NPs) iron, zinc, copper and their combinations introduced in the Murashige–Skoog (MS) nutrient medium (NM) to affect the growth and development of tomato plants (Solanum lycopersicum L.). NPs were prepared by a flow-levitation method. Metal NPs were characterised by transmission and scanning electron microscopy, X-ray phase analysis. Average NPs diameters were: iron – 27.0 nm, zinc – 54.0 nm, copper – 79.0 nm. MS NM was modified by substitution of common metal sulphates by neutral metal NPs instead of salts. Tomato seedlings cultivation on NM MS with NPs instead of salts assures improved seedling parameters (root length and root activity) in comparison with plants grown on standard MS. Venice cultivar tomato seedlings grown on NM with metal NPs demonstrated an increase in: seed germination by 10–180%, root length by 10–20%, and root activity by 10 –125%. After 45 days of cultivation, tomato seedlings were transplanted in a greenhouse and were grown up to the harvest. Effects in seed germination and increase of crop mass depended on metal nature and NPs concentration.

Inspec keywords: nanofabrication; agriculture; copper; greenhouses; iron; scanning electron microscopy; transmission electron microscopy; crops; zinc; nanoparticles

Other keywords: tomato seedlings cultivation; Venice cultivar; flow-levitation method; X-ray phase analysis; transmission electron microscopy; size 79.0 nm; size 54.0 nm; Zn; Cu; seedlings transplantion; Solanum lycopersicum L.; metal sulphates; size 27.0 nm; seed germination; iron; metal nanoparticles; Murashige-Skoog nutrient medium; time 45.0 d; greenhouse; scanning electron microscopy; Fe; tomato plants growth; copper; zinc

Subjects: Engineering materials; Nanofabrication; Agriculture

References

    1. 1)
      • 17. Garcia, M., Forbe, T., Gonzalez, E.: ‘Potential applications of nanotechnology in the agro-food sector', Ciênc. Tecnol. Alimentos, 2010, 30, pp. 573581.
    2. 2)
      • 14. Chakravarty, D., Erande, M., Late, D.: ‘Graphene quantum dots as enhanced plant growth regulators: effects on coriander and garlic plants’, J. Sci. Food Agric., 2015, 95, pp. 27722778.
    3. 3)
      • 5. Aitken, R.J., Chaudhry, M.Q., Boxall, A., et al: ‘Manufacture and use of nanomaterials: current status in the UK and global trends’, Occup. Med., 2006, 56, pp. 300306.
    4. 4)
      • 33. Adebusoye, O.O., Ping'an, J., Sina, A.: ‘Effect of phytohormones, phosphorus and potassium on cotton varieties (Gossypiumhirsutum) root growth and root activity grown in hydroponic nutrient solution’, J. Agric. Sci., 2012, 4, (3), pp. 93110.
    5. 5)
      • 8. Husen, A., Siddiqi, K.S.: ‘Phytosynthesis of nanoparticles: concept, controversy and application’, Nanoscale Res. Lett., 2014, 9, pp. 124.
    6. 6)
      • 10. Khot, L.R., Sankaran, S., Maja, J.M.: ‘Applications of nanomaterials in agricultural production and crop protection: a review’, Crop Prot., 2012, 35, pp. 6470.
    7. 7)
      • 22. Murashige, T., Skoog, F.: ‘A received medium for rapid growth and bio-assays with tobacco tissue culture’, Physiol. Plant., 1962, 15, pp. 473497.
    8. 8)
      • 19. Ruttkay-Nedecky, B., Krystofova, O., Nejdl, L., et al: ‘Nanoparticles based on essential metals and their phytotoxicity’, J. Nanobiotechnol., 2017, 15, pp. 3351.
    9. 9)
      • 6. Grillo, R., Rosa, A.H., Fraceto, L.F.: ‘Engineered nanoparticles and organic matter: a review of the state-of-the-art’, Chemosphere, 2015, 119, pp. 608619.
    10. 10)
      • 28. Rakhmetova, A.A., Bogoslovskaja, O.A., Olkhovskaya, I.P., et al: ‘Concomitant action of organic and inorganic nanoparticles in wound healing and antibacterial resistance: chitosan and copper nanoparticles in an ointment as an example’, Nanotechnol. Russ., 2015, 10, pp. 149156.
    11. 11)
      • 7. Handford, C.E., Dean, M., Henchion, M., et al: ‘Implications of nanotechnology for the agri-food industry: opportunities, benefits and risks’, Trends Food Sci. Technol., 2014, 40, pp. 226241.
    12. 12)
      • 20. Azamal, H., Khwaja, S.S.: ‘Phytosynthesis of nanoparticles: concept, controversy and application’, Nanoscale Res. Lett., 2014, 9, pp. 229252.
    13. 13)
      • 34. Kim, J.H., Lee, Y., Kim, E.J., et al: ‘Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening’, Environ. Sci. Technol., 2014, 48, pp. 34773485.
    14. 14)
      • 15. Chen, M., Sun, Y., Liang, J., et al: ‘Understanding the influence of carbon nanomaterials on microbial communities’, Environ. Int., 2019, 126, pp. 690698.
    15. 15)
      • 23. Hopkins, W.: ‘Introduction to plant physiology’ (Wiley, New York, 1999, 2nd edn.), p. 528.
    16. 16)
      • 13. Bhagat, Y., Gangadhara, K., Rabinal, C., et al: ‘Nanotechnology in agriculture: a review’, J. Pure Appl. Microbiol., 2015, 9, pp. 737747.
    17. 17)
      • 1. Knauer, K., Bucheli, T.D.: ‘Nano-materials: research needs in agriculture’, Rev. Suisse Agric., 2009, 41, pp. 341345.
    18. 18)
      • 29. Hui, Z., Min, L., Yu, C.:, et al: ‘Pepper plants response to metal nanoparticles and chitosan in nutrient media’, AJCS, 2019, 13, (3), pp. 433443.
    19. 19)
      • 12. Parisi, C., Vigani, M., Rodriguez-Cerezo, E.: ‘Agricultural nanotechnologies: what are the current possibilities?’, Nano. Today, 2015, 10, pp. 124127.
    20. 20)
      • 18. Servin, A., Elmer, W., Mukherjee, A., et al: ‘A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield’, J. Nanopart. Res., 2015, 17, pp. 121.
    21. 21)
      • 4. Perez-de-Luque, A., Rubiales, D.: ‘Nanotechnology for parasitic plant control’, Pest Manage. Sci., 2009, 65, pp. 540545.
    22. 22)
      • 27. Bogoslovskaja, O.A., Rakhmetova, A.A., Ovsyannikova, M.N., et al: ‘Antibacterial effect of copper nanoparticles with differing dispersion and phase composition’, Nanotechnol. Russ., 2014, 9, pp. 8286.
    23. 23)
      • 16. Dasgupta, N., Ranjan, S., Mundekkad, D., ‘Nanotechnology in agro-food: from field to plate’, Food Res. Int., 2015, 69, pp. 381400.
    24. 24)
    25. 25)
    26. 26)
      • 26. Rakhmetova, A.A., Alekseeva, T.P., Bogoslovskaya, O.A, et al: ‘Wound-healing properties of copper nanoparticles as a function of physicochemical parameters’, Nanotechnol. Russ., 2010, 5, pp. 271276.
    27. 27)
      • 2. Nair, R., Varghese, S.H., Nair, B.G., et al: ‘Nanoparticulate material delivery to plants’, Plant Sci., 2010, 179, pp. 154163.
    28. 28)
      • 11. Bindraban, P.S., Dimkpa, C., Nagarajan, L.: ‘Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants’, Biol. Fertil. Soils, 2015, 51, (8), pp. 897911.
    29. 29)
      • 9. Jampilek, J., Kral'ova, K.: ‘Application of nanotechnology in agriculture and food industry, its prospects and risks’, Ecol. Chem. Eng. Sci., 2015, 22, pp. 321361.
    30. 30)
      • 30. Guen, M.Y., Miller, A.V.: ‘Flow-levitation method for synthesis of ultrafine metal powders’, Phys. Chem. Mech. Surf., 1983, 2, pp. 150154.
    31. 31)
      • 32. Yuan, J., Chen, Y., Li, H., et al: ‘New insights into the cellular responses to iron nanoparticles in Capsicum annuum’, Sci. Rep., 2018, 8, (1), pp. 32283236.
    32. 32)
      • 25. Glushchenko, N.N., Bogoslovskaya, O.A., Ol'khovskaya, I.P.: ‘Physicochemical regularities of the biological action of highly dispersed powders of metals’, Khim. Fiz., 2002, 21, pp. 7985.
    33. 33)
      • 24. Glushchenko, N.N., Bogoslovskayа, O.A., Olhovskayа, I.P., et al: 2000–2017, available at: http//nanobiology.biz.
    34. 34)
      • 35. Shafea, A.A., Dawood, M.F., Zidan, M.A.: ‘Wheat seedlings traits as affected by soaking at titanium dioxide nanoparticles’, Environ. Earth Ecol., 2017, 1, pp. 102111.
    35. 35)
      • 3. Ghormade, V., Deshpande, M.V., Paknikar, K.M.: ‘Perspectives for nano-biotechnology enabled protection and nutrition of plants’, Biotechnol. Adv., 2011, 29, pp. 792803.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2019.0183
Loading

Related content

content/journals/10.1049/iet-nbt.2019.0183
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading