access icon free Surface stress-induced membrane biosensor based on double-layer stable gold nanostructures for E. coli detection

The surface stress-based biosensor has been applied in fast and sensitive identification of Escherichia coli (E. coli)with significance for public health, food, and water safety. However, the stable sensitive element of flexible biosensor based on surface stress is still crucial and challengeable. Here, the authors reported surface stress-induced biosensors based on double-layer stable gold nanostructures (D-AuNS-SSMB) for E. coli O157:H7 detection. Bacterial detection demonstrates the high stability of the biosensor. The resistance change of biosensor is linear to the logarithmic value of the E. coli O157:H7 concentrations ranging from 103 to 107 CFU/mL with a limit of detection (LOD) of 43 CFU/mL. The captured signals of D-AuNS-SSMB comes from surface stress generated by antigen–antibody binding. In addition, the biosensor exhibits good stability, reproducibility and specificity in detection of E. coli O157:H7 as well. This study provides a new preparation method of stable sensitive element for the E. coli detection.

Inspec keywords: nanosensors; biosensors; stress measurement; nanostructured materials; membranes; gold; microorganisms

Other keywords: surface stress-induced membrane biosensor; E. coli O157:H7 concentration detection; antigen–antibody binding; double-layer stable gold nanostructures; Au; escherichia coli detection; bacterial detection; water safety; D-AuNS-SSMB; stability

Subjects: Micromechanical and nanomechanical devices and systems; MEMS and NEMS device technology; Biological transport; cellular and subcellular transmembrane physics; Microsensors and nanosensors; Sensing and detecting devices; Mechanical variables measurement; Measurement of mechanical variables; Biosensors; Biosensors; Biological engineering and techniques

References

    1. 1)
      • 14. Tsouti, V., Filippidou, M.K., Boutopoulos, C., et al: ‘Self-aligned process for the development of surface stress capacitive biosensor arrays’, Sens. Actuators. B-Chem., 2012, 166–167, pp. 815818.
    2. 2)
      • 10. Lang, P.H., Loizeau, F., Hioufeige, A., et al: ‘Piezoresistive membrane surface stress sensors for characterisation of breath samples of head and neck cancer patients’, Sensors, 2016, 16, (7), p. 1149.
    3. 3)
      • 13. Satyanarayana, S., McCormick, D.T., Majumdar, A.: ‘Parylene micro membrane capacitive sensor array for chemical and biological sensing’, Sens. Actuators. B-Chem., 2006, 115, (1), pp. 494502.
    4. 4)
      • 21. Zhao, D., Zhang, Q., Liu, Y., et al: ‘Highly sensitive and flexible strain sensor based on aunps/cnts’ synergic conductive network’, Appl. Nanosci., 2019, 9, pp. 110.
    5. 5)
      • 16. Xiao, W., Huang, C., Xu, F., et al: ‘A simple and compact smartphone-based device for the quantitative readout of colloidal gold lateral flow immunoassay strips’, Sens. Actuators. B-Chem., 2018, 266, pp. 6370.
    6. 6)
      • 17. Shahhoseini, E., Ramachandran, P., Patterson, W.R., et al: ‘Determination of dose enhancement caused by aunps with Xoft(®) axxent(®) electronic (ebx™) and conventional brachytherapy: in Vitro study’, Int. J. Nanomed., 2018, 13, pp. 57335741.
    7. 7)
      • 31. Thakur, B., Zhou, G., Chang, J., et al: ‘Rapid detection of single E. coli bacteria using a graphene-based field-effect transistor device’, Biosens. Bioelectron., 2018, 110, pp. 1622.
    8. 8)
      • 19. Shen, M., Duan, N., Wu, S., et al: ‘Polydimethylsiloxane gold nanoparticle composite film as structure for aptamer-based detection of vibrio parahaemolyticus by surface-enhanced Raman spectroscopy’, Food Anal. Method, 2019, 12, (2), pp. 595603.
    9. 9)
      • 29. Wang, J., Morton, M.J., Elliott, C.T., et al: ‘Rapid detection of pathogenic bacteria and screening of phage-derived peptides using microcantilevers’, Anal. Chem., 2014, 86, (3), pp. 16711678.
    10. 10)
      • 3. Said, F.A., Menon, P.S., Rajendran, V., et al: ‘Investigation of graphene-on-metal substrates for spr-based sensor using finite-difference time domain’, IET Nanobiotechnol., 2017, 11, (8), pp. 981986.
    11. 11)
      • 26. Sang, S., Witte, H.: ‘Fabrication of a surface stress-based PDMS micro-membrane biosensor’, Microsyst. Technol., 2010, 16, (6), pp. 10011008.
    12. 12)
      • 28. Zhang, J., Ji, H.: ‘An anti E. coli o157:H7 antibody-immobilized microcantilever for the detection of Escherichia coli (E. coli)’, Anal. Sci., 2004, 20, (4), pp. 585587.
    13. 13)
      • 6. Trivedi, S., Kumar, S., Sharma, S.C., et al: ‘Biosensing application of multiwall boron nitride nanotube-based nanoresonator for detecting various viruses’, IET Nanobiotechnol., 2015, 9, (5), pp. 259263.
    14. 14)
      • 1. Khansili, N., Rattu, G., Krishna, P.M.: ‘Label-free optical biosensors for food and biological sensor applications’, Sens. Actuators. B-Chem, 2018, 265, pp. 3549.
    15. 15)
      • 32. Yang, D., Zhou, H., Haisch, C., et al: ‘Reproducible E. coli detection based on label-free sers and mapping’, Talanta, 2016, 146, pp. 457463.
    16. 16)
      • 2. Li, C., Chen, X., Zhang, Z., et al: ‘Gold nanoparticle-DNA conjugates enhanced determination of dopamine by aptamer-based microcantilever array sensor’, Sensor Actuat. B-Chem, 2018, 275, pp. 2530.
    17. 17)
      • 9. Mathew, R., Ravi Sankar, A.: ‘A review on surface stress-based miniaturized piezoresistive Su-8 polymeric cantilever sensors’, Nano-Micro Lett., 2018, 10, (2), p. 35.
    18. 18)
      • 24. Jian, A., Tang, X., Feng, Q., et al: ‘A pdms surface stress biosensor with optimized micro-membrane: fabrication and application’, Sens. Actuators. B-Chem., 2017, 242, pp. 969976.
    19. 19)
      • 7. Chen, X., Pan, Y., Liu, H., et al: ‘Label-free detection of liver cancer cells by aptamer-based microcantilever biosensor’, Biosens. Bioelectron., 2016, 79, pp. 353358.
    20. 20)
      • 8. Etayash, H., Khan, M.F., Kaur, K., et al: ‘Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes’, Nat. Commun., 2016, 7, p. 12947.
    21. 21)
      • 23. Cha, M., Shin, J., Kim, J.-H., et al: ‘Biomolecular detection with a thin membrane transducer’, Lab Chip, 2008, 8, (6), pp. 932937.
    22. 22)
      • 5. Mertens, J., Rogero, C., Calleja, M., et al: ‘Label-free detection of DNA hybridisation based on hydration-induced tension in nucleic acid films’, Nat. Nanotechnol., 2008, 3, p. 301.
    23. 23)
      • 27. Chen, S., Chu, L., Chen, T.: ‘Colorimetric detection of active botulinum neurotoxin using Cu 2 + mediated gold nanoparticles agglomeration’, Sens. Actuators. B-Chem., 2016, 235, pp. 563567.
    24. 24)
      • 30. Taylor, A.D., Yu, Q.M., Chen, S.F., et al: ‘Comparison of E. coli o157: h7 preparation methods used for detection with surface plasmon resonance sensor’, Sens. Actuators. B-Chem., 2005, 107, (1), pp. 202208.
    25. 25)
      • 15. Loizeau, F., Akiyama, T., Gautsch, S., et al: ‘Comparing membrane- and cantilever-based surface stress sensors for reproducibility’, Sens. Actuators. A-Phys., 2015, 228, pp. 915.
    26. 26)
      • 12. Yoshikawa, G., Akiyama, T., Gautsch, S., et al: ‘Nanomechanical membrane-type surface stress sensor’, Nano Lett., 2011, 11, (3), pp. 10441048.
    27. 27)
      • 22. El-Naggar, M.E., Shaheen, T.I., Fouda, M.M.G., et al: ‘Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core–shell silver–gold nanoparticles’, Carbohydr. Polym., 2016, 136, pp. 11281136.
    28. 28)
      • 18. Guterman, T., Ing, N.L., Fleischer, S., et al: ‘Electrical conductivity, selective adhesion, and biocompatibility in bacteria-inspired peptide–metal self-supporting nanocomposites’, Adv. Mater., 2019, 31, (10), p. 1807285.
    29. 29)
      • 4. Bisen, M., Ansari, M.Z.: ‘Phenomenological modelling sensitivity of su8/Cb nanocomposite conducting polymer microcantilever biosensor’, Mater.Today: P., 2017, 4, (9), pp. 1039510399.
    30. 30)
      • 11. Firdaus, S.M., Azid, I.A., Sidek, O., et al: ‘Enhancing the sensitivity of a mass-based piezoresistive micro-electro-mechanical systems cantilever sensor’, Micro-Nano Lett., Inst. Eng. Technol., 2010, 5, pp. 8590.
    31. 31)
      • 25. Zeinabad, H.A., Ghourchian, H., Falahati, M., et al: ‘Ultrasensitive interdigitated capacitance immunosensor using gold nanoparticles’, Nanotechnology, 2018, 29, (26), p. 1265102.
    32. 32)
      • 20. Sang, S., Witte, H.: ‘A novel pdms micro membrane biosensor based on the analysis of surface stress’, Biosens. Bioelectron., 2010, 25, (11), pp. 24202424.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2019.0096
Loading

Related content

content/journals/10.1049/iet-nbt.2019.0096
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading