access icon free Current trends in nano-technological interventions on plant growth and development: a review

Nanomaterials, recently have found burgeoning attention in the field of agriculture, owing to the positive correlation between nanoparticle (NP) application and the enhanced nutritional status of the applied plants. A wide range of NPs, namely carbon-based NPs, titanium dioxide NPs, silica NPs etc. has been found to influence plants in a positive way by increasing their nutrient uptake ratio, nutrient usage efficiency, among others. All these attributes have paved the way for possible improvement in plant growth, development, vigour etc. through the use of these NPs, mainly as nanofertiliser. In view of all these, it can also be concluded that in the global scenario of increased demand of food production and supply in the coming years, nanotechnology promises to play a critical role. In this review, an attempt has been made to consolidate all the positive trends with respect to application of NPs on plants, along with their probable mechanism of action, which may provide a comprehensive insight for researchers working in this field.

Inspec keywords: food products; agriculture; nanotechnology; nanofabrication; fertilisers; nanobiotechnology; titanium compounds; nanoparticles; crops; reviews

Other keywords: nutrient uptake ratio; silica NPs; applied plants; influence plants; nanotechnological interventions; positive correlation; nanoparticle application; enhanced nutritional status; plant growth; titanium dioxide NPs; positive trends; nutrient usage efficiency; carbon-based NPs

Subjects: Reviews and tutorial papers; resource letters; Environmental issues; Industrial processes; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Products and commodities; Engineering materials; Methods of nanofabrication and processing; Food industry; Agriculture

References

    1. 1)
      • 4. Taniguchi, N.: ‘On the basic concept of nanotechnology’. Proc. Int. Conf. Production Engineering, Tokyo, Japan, 26–29 August 1974, pp. 1823, Japan Society of Precision Engineering, 1974.
    2. 2)
      • 56. Alidoust, D., Isoda, A.: ‘Effect of gamma Fe2O3 nanoparticles on photosynthetic characteristic of soybean [Glycine max (L.) Merr.]: foliar spray versus soil amendment’, Acta Physiol. Plant., 2013, 35, (12), pp. 33653375.
    3. 3)
      • 36. Nekrasov, G.F., Ushakova, O.S., Ermakov, A.E., et al: ‘Effects of copper(II) ions and copper oxide nanoparticles on Elodea densa planch.’, Russ. J. Ecol., 2011, 42, (6), pp. 458463.
    4. 4)
      • 15. Chinnamuthu, C.R., Boopathi, P.M.: ‘Nanotechnology and agroecosystem’, Madras Agric. J., 2009, 96, (1–6), pp. 1731.
    5. 5)
      • 34. Yang, F., Hong, F., You, W., et al: ‘Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach’, Biol. Trace Elem. Res., 2006, 110, pp. 179190.
    6. 6)
      • 85. Gutiérrez, F.J., Mussons, M.L., Gatón, P., et al: ‘Nanotechnology and food industry’, in Benjamin, Valdez (Ed.): ‘Scientific, health and social aspects of the food industryISBN: 978-953-307-916-5, InTech., (InTech., Croatia, 2011), pp. 95128.
    7. 7)
      • 5. Klaine, S.J., Alvarez, P.J.J., Batley, G.E., et al: ‘Nanomaterials in the environment: behavior, fate, bioavailability and effects’, Environ. Toxicol. Chem., 2008, 27, pp. 18251851. http://dx.doi.org/10.1897/08-090.1.
    8. 8)
      • 53. Prasad, T.N.V.K.V., Sudhakar, P., Sreenivasulu, Y., et al: ‘Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut’, J. Plant Nutr., 2012, 35, (6), pp. 905927.
    9. 9)
      • 22. Tiwari, D.K., Dasgupta-Schubert, N., Villaseñor Cendejas, L.M., et al: ‘Inter facing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nano agriculture’, Appl. Nanosci., 2014, 4, pp. 577591. doi:10.1007/s13204-013-0236-7.
    10. 10)
      • 9. Mochizuki, H., Gautam, P.K., Sinha, S., et al: ‘Increasing fertilizer and pesticide use efficiency by nanotechnology in desert afforestation, arid agriculture’, J. Arid Land Stud., 2009, 19, (1), pp. 129132.
    11. 11)
      • 59. Pradhan, S., Patra, P., Das, S., et al: ‘Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study’, Environ. Sci. Technol., 2013, 47, (22), pp. 1312213131.
    12. 12)
      • 51. Castiglione, R.M., Giorgetti, L., Geri, C., et al: ‘The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L.’, J. Nanopart. Res., 2011, 13, pp. 24432449.
    13. 13)
      • 32. Song, G.L., Gao, Y., Wu, H., et al: ‘Physiological effect of anatase TiO2 nanoparticles on Lemna minor’, Environ. Toxicol. Chem., 2012, 31, pp. 21472152.
    14. 14)
      • 30. Gao, F., Liu, C., Qu, C., et al: ‘Was improvement of spinach growth by nano-TiO2 treatment related to the changes of RubisCO Activase?’, Biometals, 2008, 21, pp. 211217.
    15. 15)
      • 10. Fahlman, B.D.: ‘Materials chemistry’ (Springer, Dordrecht, Netherlands, 2007).
    16. 16)
      • 62. Raskar, S.V., Laware, S.L.: ‘Effect of zinc oxide nanoparticles on cytology and seed germination in onion’, Int. J. Curr. Microbiol. Appl. Sci., 2014, 3, pp. 467473.
    17. 17)
      • 20. Arora, S., Sharma, P., Kumar, S., et al: ‘Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea’, Plant Growth Regul., 2012, 66, pp. 303310, DOI 10.1007/s10725-011-9649-z.
    18. 18)
      • 61. Liu, R., La, L.R.: ‘Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max)’, Sci. Rep., 2014, 4, (5686), pp. 16.
    19. 19)
      • 14. Hidayat, R., Fadillah, G., Chasanah, U., et al: ‘Effectiveness of urea nanofertilizer based aminopropyltrimethoxysilane (APTMS)-zeolite as slow release fertilizer system’, Afr. J. Agric. Res., 2015, 10, (14), pp. 17851788.
    20. 20)
      • 19. Wang, Z., Xie, X., Zhao, J., et al: ‘Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.)’, Environ. Sci. Technol., 2012, 46, pp. 44344441.
    21. 21)
      • 82. Le, V.N., Rui, Y., Gui, X., et al: ‘Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-Transgenic cotton’, J. Nanobiotechnol., 2014, 12, (50), doi:10.1186/s12951-014-0050-8.
    22. 22)
      • 40. Navarro, E., Baun, A., Behra, R., et al: ‘Environmental behaviour and ecotoxicity of engineered nanoparticles to algae, plants and fungi’, Ecotoxicology, 2008, 17, pp. 372386.
    23. 23)
      • 11. Raliya, R., Tarafdar, J.C., Gulecha, K., et al: ‘Review article: scope of nanoscience and nanotechnology in agriculture’, J. Appl. Biol. Biotechnol., 2013, 1, (3), pp. 041044.
    24. 24)
      • 27. Zheng, L., Hong, F., Lu, S., et al: ‘Effects of nano-TiO2 on strength of naturally aged seeds and growth of spinach’, Biol. Trace Elem. Res., 2005, 104, pp. 8392.
    25. 25)
      • 39. Sundaria, N., Singh, M., Upreti, P., et al: ‘Seed priming with iron oxide nanoparticles triggers iron acquisition and biofortification in wheat (Triticum aestivum L.) grains’, J. Plant Growth Regul., 2018, 10, pp. 122131, 1007/s00344-018-9818-7.
    26. 26)
      • 24. Khodakovskaya, M.V., DeSilva, K., Nedosekin, D.A., et al: ‘Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions’, Proc. Natl. Acad. Sci. USA, 2011, 108, pp. 10281033. doi:10.1073/pnas.1008856108.
    27. 27)
      • 13. Manikandan, A., Subramanian, K.S.: ‘Fabrication and characterisation of nanoporous zeolite-based N fertilizer’, Afr. J. Agric. Res., 2014, 9, (2), pp. 276284.
    28. 28)
      • 80. Boonyanitipong, P., Kostsup, B., Kumar, P., et al: ‘Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oriza sativa L.’, Int. J. Biosci. Biochem. Bioinf., 2011, 1, (4), pp. 282285.
    29. 29)
      • 57. Almeelbi, T., Bezbaruah, A.: ‘Nanoparticle-sorbed phosphate: iron and phosphate bioavailability studies with Spinacia oleracea and Selenastrum capricornutum’, ACS Sustain. Chem. Eng., 2014, 2, (7), pp. 16251632.
    30. 30)
      • 77. Kumari, M., Gole, A.M., Chandrasekaran, N.: ‘Genotoxicity of silver nanoparticles in Allium cepa’, Sci. Tot. Environ., 2009, 407, pp. 52435246.
    31. 31)
      • 49. Siddiqui, M.H., Al-Whaibi, M.H., Firoz, M., et al: ‘Role of nanoparticles in plants, nanotechnology and plant sciences’ (Springer, Cham, 2015), pp. 1935. http://dx.doi. org/10.1007/978-3-319-14502-0_2.
    32. 32)
      • 16. Judy, J.D., Unrine, J.M., Rao, W., et al: ‘Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating’, Environ. Sci. Technol., 2012, 46, pp. 84678474.
    33. 33)
      • 35. Mishra, V., Mishra, R.K., Dikshit, A., et al: ‘Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry’, in Ahmad, P., Rasool, S. (Eds.): ‘Emerging technologies and management of crop stress tolerance: biological techniques’, vol. 1, Academic Press, Elsevier, CA, 2014, pp. 159180.
    34. 34)
      • 75. Gopinath, K., Gowri, S., Karthika, V., et al: ‘Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba’, J. Nanostruct. Chem., 2014, 4, pp. 111.
    35. 35)
      • 17. Kurepa, J., Paunesku, T., Vogt, S., et al: ‘Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana’, Nano Lett., 2010, 10, pp. 22962302.
    36. 36)
      • 55. Burman, U., Saini, M., Praveen-Kumar, : ‘Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings’, Toxicol. Environ. Chem., 2013, 95, (4), pp. 605612.
    37. 37)
      • 48. Gupta, S.M., Tripathi, M.: ‘A review of TiO2 nanoparticles’, Chin. Sci. Bull., 2011, 56, pp. 16391657.
    38. 38)
      • 38. Joshi, A., Kaur, S., Dharamvir, K., et al: ‘Multiwalled carbon nanotubes applied through seed-priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.)’, J. Sci. Food Agri., 2017, 8, pp. 31483160.
    39. 39)
      • 76. Kumar, V., Guleria, P., Kumar, V., et al: ‘Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana’, Sci. Total Environ., 2013, 461, pp. 462468. doi: 10.1016/j.scitotenv.2013.05.018.
    40. 40)
      • 26. Tripathi, S., Sonkar, S.K., Sarkar, S.: ‘Growth stimulation of gram (Cicer arietinum) plant by water-soluble carbon nanotubes’, Nanoscale, 2011, 3, pp. 11761181. doi:10.1039/C0NR00722F.
    41. 41)
      • 31. Su, M., Liu, H., Liu, C., et al: ‘Promotion of nano-anatase TiO2 on the spectral responses and photochemical activities of D1/D2/Cyt b559 complex of spinach’, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 2009, 72, pp. 11121116.
    42. 42)
      • 60. Pradhan, S., Patra, P., Mitra, S., et al: ‘Manganese nanoparticles: impact on non-modulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro’, J. Agric. Food Chem., 2014, 62, (35), pp. 87778785.
    43. 43)
      • 73. Barrena, R., Casals, E., Colón, J., et al: ‘Evaluation of the ecotoxicity of model nanoparticles’, Chemosphere, 2009, 75, (7), pp. 850857.
    44. 44)
      • 43. Khodakovskaya, M.V., DeSilva, K., Biris, A.S., et al: ‘Carbon nanotubes induce growth enhancement of tobacco cells’, ACS Nano, 2012, 6, pp. 21282135. doi:10.1021/nn204643 g.
    45. 45)
      • 52. Ma, X.M., Geiser-Lee, J., Deng, Y., et al: ‘Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation’, Sci. Total Environ., 2010, 408, (16), pp. 30533061.
    46. 46)
      • 68. Siddiqui, M.H., Al-Whaibi, M.H.: ‘Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds mill.)’, Saudi J. Biol. Sci., 2014, 21, pp. 1317.
    47. 47)
      • 50. Xie, Y., He, Y., Irwin, P.L., et al: ‘Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni’, Appl. Environ. Microbiol., 2011, 77, pp. 325331.
    48. 48)
      • 69. Suriyaprabha, R., Karunakaran, G., Yuvak Kumar, R., et al: ‘Silica nanoparticles for increased silica availability in maize (Zea mays L) seeds under hydroponic conditions’, Curr. Nanosci., 2012, 8, pp. 902908.
    49. 49)
      • 47. Canas, J.E., Long, M., Nations, S., et al: ‘Effects of functionalized and non-functionalized single-walled carbon nanotubes on root elongation of select crop species’, Environ. Toxicol. Chem., 2008, 27, pp. 19221931.
    50. 50)
      • 44. Sonkar, S.K., Roy, M., Babar, D.G., et al: ‘Water soluble carbon nano-onions from wood wool as growth promoters for gram plants’, Nanoscale, 2012, 4, (24), pp. 76707767.
    51. 51)
      • 45. Tripathi, S., Sarkar, S.: ‘Influence of water-soluble carbon dots on the growth of wheat plant’, Appl. Nanosci., 2014, 5, pp. 609616. doi:10.1007/s13204-014- 0355-9.
    52. 52)
      • 63. Ramesh, M., Palanisamy, K., Babu, K., et al: ‘Effects of bulk & nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum Linn.’, J. Glob. Biosci., 2014, 3, pp. 415422.
    53. 53)
      • 46. Kole, C., Kole, P., Randunu, K.M., et al: ‘Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia)’, BMC Biotechnol., 2013, 13, p.37. doi:10.1186/1472- 6750-13-37.
    54. 54)
      • 54. Raliya, R., Tarafdar, J.C.: ‘ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonoloba L.)’, Agric. Res., 2013, 2, pp. 4857.
    55. 55)
      • 42. Khodakovskaya, M.V., Kim, B.S., Kim, J.N., et al: ‘Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community’, Small, 2013, 9, (1), pp. 115123.
    56. 56)
      • 81. Du, W., Sun, Y., Ji, R., et al: ‘Tio2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil’, J. Environ. Monit., 2011, 13, pp. 822828.
    57. 57)
      • 28. Hong, X.T., Wang, Z.P., Cai, W.M., et al: ‘Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide’, Chem. Matter., 2005, 17, pp. 15481552.
    58. 58)
      • 37. Tarafdar, J.C., Raliya, R., Mahawar, H., et al: ‘Development of zinc nanofertilizer to enhance to enhance crop production in pearl millet (Pennisetum americanum)’, Agric. Res., 2014, 3, (3), pp. 257262.
    59. 59)
      • 58. Mohamadipoor, R., Sedaghathoor, S., Khomami, A.M.: ‘Effect of application of iron fertilizers in two methods ‘foliar and soil application’ on growth characteristics of Spathyphyllum illusion’, Eur. J. Exp. Biol., 2013, 3, (1), pp. 232239.
    60. 60)
      • 65. Shah, V., Belozerova, I.: ‘Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds’, Water Air Soil Pollut., 2009, 197, pp. 143148.
    61. 61)
      • 78. Ghodake, G., Seo, Y.D., Park, D., et al: ‘Phytotoxicity of carbon nanotubes assesses by Brassica juncea and Phaseolus mungo’, J. Nanoelectron. Optoelectron., 2010, 5, (2), pp. 157160(4). DOI 10.1166/jno.2010.1084.
    62. 62)
      • 6. Ball, P.: ‘Natural strategies for the molecular engineer’, Nanotechnology, 2002, 13, p. 15e28.
    63. 63)
      • 33. Jaberzadeh, A., Moaveni, P., Tohidi Moghadam, H.R., et al: ‘Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress’, Not Bot Horti Agrobot, 2013, 41, (1), pp. 201207.
    64. 64)
      • 29. Yang, F., Liu, C., Gao, F., et al: ‘The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction’, Biol. Trace Elem. Res., 2007, 119, pp. 7788.
    65. 65)
      • 41. Khot, L.R., Sankaran, S., Maja, J.M., et al: ‘Applications of nanomaterials in agricultural production and crop protection: a review’, Crop Prot., 2012, 35, pp. 6470. doi:10.1016/j.cropro.2012. 01.007.
    66. 66)
      • 8. Monica, R.C., Cremonini, R.: ‘Nanoparticles and higher plants’, Caryologia, 2009, 62, p. 161e165.
    67. 67)
      • 23. Lin, D., Xing, B.: ‘Phytotoxicity of nanoparticles: inhibition of seed germination and root growth’, Environ. Pollut., 2007, 150, pp. 243250. doi: 10.1016/j.envpol.2007.01.016.
    68. 68)
      • 74. Savithramma, N., Ankanna, S., Bhumi, G.: ‘Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata – an endemic and endangered medicinal tree taxon’, Nano Vis., 2012, 2, pp. 6168.
    69. 69)
      • 79. Lee, W.M., Any, J., Yoon, H., et al: ‘Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles’, Environ. Toxicol. Chem., 2008, 27, pp. 19151921.
    70. 70)
      • 66. Lu, C.M., Zhang, C.Y., Wen, J.Q., et al: ‘Research of the effect of nanometre materials on germination and growth enhancement of Glycine max and its mechanism’, Soybean Sci., 2002, 21, pp. 168172.
    71. 71)
      • 2. Lyons, K.: ‘Nanotechnology: transforming food and the environment’, Food First Backgrounder, 2010, 16, pp. 14.
    72. 72)
      • 25. Lahiani, M.H., Dervishi, E., Chen, J., et al: ‘Impact of carbon nanotube exposure to seeds of valuable crops’, ACS Appl. Mater. Interfaces, 2013, 5, pp. 79657973. doi:10.1021/am402052x.
    73. 73)
      • 67. Mahmoodzadeh, H., Nabavi, M., Kashefi, H.: ‘Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus)’, J. Ornamental Hortic Plants, 2013, 3, pp. 2532.
    74. 74)
      • 21. Villagarcia, H., Dervishi, E., de Silva, K., et al: ‘Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants’, Small, 2012, 8, pp. 23282334.
    75. 75)
      • 72. Siddiqui, M.H., Al-whaibi, M., Faisal, M., et al: ‘Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L’, Environ. Toxicol. Chem., 2014, 33, pp. 242937, 10.1002/etc.2697.
    76. 76)
      • 83. Miller, G., Kinnear, S.: ‘Nanotechnology the new threat to food’, Clean Food Org., 2007, 4, pp. 17.
    77. 77)
      • 71. Haghighi, M., Afifipour, Z., Mozafarian, M.: ‘The effect of N–Si on tomato seed germination under salinity levels’, J. Biol. Environ. Sci., 2012, 6, pp. 8790.
    78. 78)
      • 64. De la Rosa, G., Lopez-Moreno, M.L., De Haro, D., et al: ‘Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies’, Pure Appl. Chem., 2013, 85, (12), pp. 21612174.
    79. 79)
      • 70. Bao-shan, L., Shao-qi, D., Chun-hui, L., et al: ‘Effect of TMS (nanostructured silicon dioxide) on growth of Changbai Larch seedlings’, J. Forest Res., 2004, 15, pp. 138140.
    80. 80)
      • 1. Gong, P., Li, H., He, X., et al: ‘Preparation and antibacterial activity of Fe3O4 and Ag nanoparticles’, Nanotechnology, 2007, 18, pp. 604611.
    81. 81)
      • 7. Tam, H.L., Cheah, K.W., Goh, D.T.P., et al: ‘Iridescence and nano-structure differences in Papilio butterflies’, Opt. Mater. Express, 2013, 3, (8), pp. 10871092.
    82. 82)
      • 84. Nair, R., Varghese, S.H., Nair, B.G., et al: ‘Nanoparticulate material delivery to plants’, Plant Sci., 2010, 179, pp. 154163.
    83. 83)
      • 12. De La Rosa, M.C., Monreal, C., Schnitzer, M., et al: ‘Nanotechnology in fertilizers’, Nat. Nanotechnol. J., 2010, 5, (2), pp. 9196.
    84. 84)
      • 3. Drexler, E.: ‘There's plenty of room at the bottom (Richard Feynman, Pasadena, 29 December 1959), metamodern’, Trajectory Technol., 2009, 12, 29. (1), pp. 14.
    85. 85)
      • 18. Raliya, R., Tarafdar, J.D., Biswas, P.: ‘Enhancing the mobilization of native phosphorus in the mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi’, J. Agric. Food Chem., 2016, 64, pp. 31113118.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2019.0008
Loading

Related content

content/journals/10.1049/iet-nbt.2019.0008
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading