http://iet.metastore.ingenta.com
1887

Synergistic evaluation of AgO2 nanoparticles with ceftriaxone against CTXM and blaSHV genes positive ESBL producing clinical strains of Uro-pathogenic E. coli

Synergistic evaluation of AgO2 nanoparticles with ceftriaxone against CTXM and blaSHV genes positive ESBL producing clinical strains of Uro-pathogenic E. coli

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The silver oxide nanoparticles (AgO2-NPs) were synthesised using silver foil as a new precursor in wet chemical method. X-ray diffraction analysis shows crystallographic structures of AgO2-NPs with crystallite size of 35.54 nm well-matched with standard cubic structure. Scanning electron microscopy analysis clearly shows the random distribution of spherical-shaped nanoparticles. Energy dispersive X-ray analysis confirmed the purity of the samples as it shows no impurity element. Fourier transforms infra-red analysis confirmed the formation of AgO2-NPs with the presence of Ag-O-Ag stretching bond. All the techniques also confirmed the loading of ceftriaxone drug on the surface of AgO2-NPs. This study also described the effect of AgO2-NPs having synergistic activity with β lactam antibiotic i.e. ceftriaxone against ESBL generating Escherichia coli (E. coli). Among isolated strains of E. coli, 60.0% were found to be ESBL producer. The synergistic activities of AgO2-NPs with ceftriaxone suggest that these combinations are effective against MDR-ESBL E. coli strains as evident by increase in zone sizes. The present study observed rise in MDR-ESBL E. coli with polymorphism of blaCTXM and blaSHV causing UTI infections in Pakistani population. The antibiotic and AgO2-NPs synergistic effect can be used as an efficient approach to combat uro-pathogenic infections.

References

    1. 1)
      • 1. Pitout, J. D. D., Laupland, K. B.: ‘Extended-spectrum beta-lactamase-producing Entero-bacteriaceae: an emerging public-health concern’, Lancet Infect. Dis., 2008, 8, pp. 159166.
    2. 2)
      • 2. Zorc, J. J., Kiddoo, D. A., Shaw, K. N.: ‘Diagnosis and management of pediatric urinary tract infections’, Clin. Microbiol. Rev., 2005, 18, pp. 417422.
    3. 3)
      • 3. Knothe, H., Shah, P., Krcmery, V., et al: ‘Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiellapneumoniae and Serratiamarcescens’, Infection, 1983, 11, pp. 315317.
    4. 4)
      • 4. Bauernfeind, A., Hörl, G.: ‘Novel R-factor borne beta-lactamase of Escherichia coli confering resistance to cephalosporins’, Infection, 1987, 15, pp. 257259.
    5. 5)
      • 5. Latifpour, M., Gholipour, A., Damavandi, M.S.: ‘Prevalence of extended-spectrum beta-lactamase-producing Klebsiellapneumoniae isolates in nosocomial and community-acquired urinary tract infections’, Jundishapur J. Microbiol., 2016, 9, (3), p. e31179.
    6. 6)
      • 6. Perez, F., Endimiani, A., Hujer, K.M., et al: ‘The continuing challenge of ESBLs’, Curr. Opin. Pharmacol., 2007, 7, pp. 459469.
    7. 7)
      • 7. Yoon, K. Y., Byeon, J. H., Park, J.H., et al: ‘Antimicrobial characteristics of silver aerosol nanoparticles against Bacillus subtilis’, Science, 2008, 25, pp. 289293.
    8. 8)
      • 8. Durán, N., Durán, M., de Jesus, M.B., et al: ‘Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity’, Nanomedicine, 2016, 12, (3), pp. 789799.
    9. 9)
      • 9. Boopathi, S., Gopinath, S., Boopathi, T., et al: ‘Characterization and antimicrobial properties of silver and silver oxide nanoparticles synthesized by cell-free extract of a mangrove-associated Pseudomonas aeruginosa M6 using two different thermal treatments’, Ind. Eng. Chem. Res., 2012, 51, (17), pp. 59765985.
    10. 10)
      • 10. Negi, H., Rathinavelu, S. P., Agarwal, T., et al: ‘In vitro assessment of Ag2O nanoparticles toxicity against gram-positive and gram-negative bacteria’, J. Gen. Appl. Microbiol., 2013, 59, pp. 8388.
    11. 11)
      • 11. Wang, X., Wu, H.-F., Kuang, Q., et al: ‘Shape-dependent antibacterial activities of Ag2O polyhedral particles’, Langmuir, 2009, 26, (4), pp. 27742778.
    12. 12)
      • 12. Martinez-Guterirz, F., Thi, E. P., Silverman, J. M.: ‘Antibacterial activity, inflammatory response, coagulation, and cytotoxicity effect of silver nanoparticles’, Nanomedicine, 2012, 8, (3), pp. 328336.
    13. 13)
      • 13. Kar, D., Bandyopadhyay, S., Deba, U., et al: ‘Antibacterial effect of silver nanoparticles and capsaicin against MDR-ESBL producing Escherichia coli: an in vitro study’, Microbiol. Res., 2016, 8, pp. 807810.
    14. 14)
      • 14. Jabeen, N., Maqbool, Q., Shamaila, S., et al: ‘Biosynthesis and characterization of nano-silica as potential system for carrying streptomycin at nano-scale drug delivery’, IET Nanobiotechnol., 2016, 11, pp. 557561.
    15. 15)
      • 15. Ruden, S., Hilpert, K., Berditsch, M., et al: ‘Synergistic interaction between silver nanoparticles and membrane permeabilizing antimicrobial peptides’, Antimicrob. Agents Chemother., 2009, 53, pp. 35383540.
    16. 16)
      • 16. Choi, J. S., Lee, H., Park, Y.K., et al: ‘Application of silver and silver oxide nanoparticles impregnated on activated carbon to the degradation of bromate’, J. Nanosci. Nanotechnol., 2016, 16, pp. 44934497.
    17. 17)
      • 17. Ji, R., Wang, L., Yu, L., et al: ‘Effective electrocatalysis based on Ag2O nanowire arrays supported on a copper substrate’, ACS Appl. Mater. Interfaces, 2013, 5, pp. 1046510472.
    18. 18)
      • 18. MacFaddin, J. F.: ‘Biochemical tests for identification of medical bacteria’ (Williams and Wilkins, London, 2000).
    19. 19)
      • 19. Clinical and Laboratory Standards Institute: ‘Performance standards for antimicrobial susceptibility testing. Twenty second informational supplement update’, CLSI document M100-S22 U (Clinical and Laboratory Standards Institute, Wayne, PA, 2012).
    20. 20)
      • 20. Drieux, L., Brossier, F., Sougakoff, W., et al: ‘Phenotypic detection of extended spectrum -lactamase production in Enterobacteriaceae: review and bench guide’, Clin. Microbiol. Infect., 2008, 14, (1), pp. 90103.
    21. 21)
      • 21. Wilson, K.: ‘Preparation of genomic DNA from bacteria’, Curr. Protoc. Mol. Biol., 2001, p. mb0204s56, DOI: 10.1002/0471142727.
    22. 22)
      • 22. Edwards, D. H., Errington, J.: ‘The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division’, Mol. Microbiol., 1997, 24, (5), pp. 905915.
    23. 23)
      • 23. Dakal, T.C., Kumar, A., Majumdar, R.S., et al: ‘Mechanistic basis of antimicrobial actions of silver nanoparticles’, Front. Microbiol., 2016, 7, p. 1831.
    24. 24)
      • 24. Clark, C. J., Kennedy, W. A., Shortliffe, L. D.: ‘Urinary tract infection in children: when to worry’, Urol. Clin. N. Am., 2010, 37, (2), pp. 229241.
    25. 25)
      • 25. Gholipour, A., Soleimani, N., Shokri, D., et al: ‘Phenotypic and molecular characterization of extended-spectrum beta-lactamase produced by Escherichia coli, and Klebsiellapneumoniae isolates in an educational hospital’, Jundishapur J. Microbiol., 2014, 7, (8), p. 11758.
    26. 26)
      • 26. Mansor, V. M., Shahid, M., Evans, J.T., et al: ‘Occurrence, prevalence and genetic environment of CTX-M b-lactamases in Enterobacteriaceae from Indian hospitals’, J. Antimicrob. Chemother., 2006, 58, pp. 12601263.
    27. 27)
      • 27. Masroor, H., Fariha, H., Aamir, S. A., et al: ‘Prevalence of class A and AmpC b-lactamases in clinical Escherichia coli isolates from Pakistan institute of medical science, Islamabad, Pakistan’, Jpn. J. Infect. Dis., 2011, 64, pp. 249252.
    28. 28)
      • 28. Canton, R., Novais, A., Valverde, A., et al: ‘Prevalence and spread of extended spectrum beta-lactamase producing Enterobacteriaceae in Europe’, Clin. Microbiol. Infect., 2008, 14, (1), pp. 144153.
    29. 29)
      • 29. Connor, O.C., Roy, K., Philip, P., et al: ‘The first occurrence of a CTX-M ESBL producing Escherichia coli outbreak mediated by mother to neonate transmission in an Irish neonatal intensive care unit’, BMC Infect. Dis., 2017, 17, pp. 27.
    30. 30)
      • 30. Schreurs, W. J., Rosenberg, H.: ‘Effect of silver ions on transport and retention of phosphate by Escherichia coli’, J. Bacteriol., 1982, 152, (1), pp. 713.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5415
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5415
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address