access icon free Multifaceted activities of plant gum synthesised platinum nanoparticles: catalytic, peroxidase, PCR enhancing and antioxidant activities

A single pot, green method for platinum nanoparticles (Pt NP) production was devised with gum ghatti (Anogeissus latifolia). Analytical tools: ultraviolet–visible (UV-vis), dynamic light scattering, zeta potential, transmission electron microscope, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy were employed. Wide continuous UV-vis absorption and black solution colouration proved Pt NP formation. Face-centred cubic crystalline structure of NP was evidenced from XRD. NPs formed were nearly spherical with a mean particle size of 3 nm. NP demonstrated a myriad of properties including catalytic, peroxidase, polymerase chain reaction (PCR) enhancing and antioxidant activities. Catalytic action of NP was probed via NaBH4 reduction of arsenazo-III dye. NP displayed considerable peroxidase activity via catalysis of 3, 3′, 5, 5′-tetramethylbenzidine oxidation by H2O2. NP showed exceptional stability towards varying pH (3–11), temperature (25–100°C), salt concentration (0–100 mM) and storage time duration (0–12 months). In comparison with horse radish peroxidase, its applicability as an artificial peroxidase is advantageous. NP caused a two-fold enhancement in PCR yield at 0.4 nM. Also showed significant 1′, 1′ diphenyl picryl-hydrazyle scavenging (80.1%) at 15 µg/mL. Author envisages that the biogenic Pt NP can be used in a range of biological and environmental applications.

Inspec keywords: reduction (chemical); light scattering; molecular biophysics; ultraviolet spectra; X-ray diffraction; Fourier transform infrared spectra; oxidation; dyes; visible spectra; catalysis; nanofabrication; pH; nanomedicine; scanning electron microscopy; nanoparticles; transmission electron microscopy; particle size; platinum; electrokinetic effects; biochemistry; enzymes

Other keywords: Fourier transform infrared spectroscopy; peroxidase activity; polymerase chain reaction enhancing activity; black solution colouration; analytical characterisation tools; transmission electron microscopy; ultraviolet-visible spectroscopy; time 0.0 month to 12.0 month; arsenazo-III; single pot green method; face-centred cubic crystalline structure; environmental conditions; artificial peroxidase; Pt; anogeissus latifolia; particle size; gum ghatti; Pt NP formation; PCR yield; X-ray diffraction; catalytic action; plant gum synthesised platinum nanoparticles; 1′,1′ diphenyl picryl-hydrazyle scavenging; antioxidant activities; zeta potential; dynamic light scattering; pH; temperature 25.0 degC to 100.0 degC; wide continuous UV-visible absorption; salt concentration; catalytic activity; azo dye decolourisation; XRD; two-fold enhancement; multifaceted activities; 3, 3′, 5, 5′-tetramethylbenzidine oxidation; PCR enhancing activity

Subjects: Physical chemistry of biomolecular solutions and condensed states; Low-dimensional structures: growth, structure and nonelectronic properties; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Chain reactions; Infrared and Raman spectra in metals; Optical properties of metals and metallic alloys (thin films, low-dimensional and nanoscale structures); Electrochemistry and electrophoresis; Visible and ultraviolet spectra of metals, semimetals, and alloys; Other methods of nanofabrication; Heterogeneous catalysis at surfaces and other surface reactions; Nanotechnology applications in biomedicine; Brillouin and Rayleigh scattering; other light scattering (condensed matter)

References

    1. 1)
      • 8. Pooja, D., Panyaram, S., Kulhari, H., et al: ‘Natural polysaccharide functionalized gold nanoparticles as biocompatible drug delivery carrier’, Int. J. Biol. Macromol., 2015, 80, (Supplement C), pp. 4856.
    2. 2)
      • 27. Ramamurthy, C.H., Padma, M., Mariya Samadanam, I.D., et al: ‘The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties’, Colloid. Surf. B, 2013, 102, pp. 808815.
    3. 3)
      • 13. Anastas, P.T., Warner, J.C.: ‘Green chemistry: theory and practice’ (Oxford University Press, New York, 1998).
    4. 4)
      • 26. Kaul, R., Mattiasson, B.: ‘Improving the shelf life of enzymes by storage under anhydrous apolar solvent’, Biotechnol. Techniques, 1993, 7, (8), pp. 585590.
    5. 5)
      • 7. Mohan, Y.M., Raju, K.M., Sambasivudu, K., et al: ‘Preparation of acacia-stabilized silver nanoparticles: a green approach’, J. Appl. Polym. Sci., 2007, 106, (5), pp. 33753381.
    6. 6)
      • 20. Vinod, V.T.P., Saravanan, P., Sreedhar, B., et al: ‘A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium)’, Colloid. Surf. B, 2011, 83, (2), pp. 291298.
    7. 7)
      • 23. Kalaiselvi, A., Roopan, S.M., Madhumitha, G., et al: ‘Synthesis and characterization of palladium nanoparticles using Catharanthus roseus leaf extract and its application in the photo-catalytic degradation’, Spectrochim. Acta Part A, 2015, 135, pp. 116119.
    8. 8)
      • 22. Alosmanov, R.M.: ‘Adsorption of arsenazo Iii dye by phosphorus-containing polymer sorbent’, J. Serb. Chem. Soc., 2016, 81, (8), pp. 907921.
    9. 9)
      • 24. Josephy, P.D., Eling, T., Mason, R.P.: ‘The horseradish peroxidase-catalyzed oxidation of 3,5,3′,5′-tetramethylbenzidine. Free radical and charge-transfer complex intermediates’, J. Biol. Chem., 1982, 257, (7), pp. 36693675.
    10. 10)
      • 2. Gericke, M., Pinches, A.: ‘Microbial production of gold nanoparticles’, Gold Bull.., 2006, 39, (1), pp. 2228.
    11. 11)
      • 15. Li, W., Chen, B., Zhang, H., et al: ‘Bsa-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury(Ii) ions’, Biosens. Bioelectron., 2015, 66, pp. 251258.
    12. 12)
      • 10. Thombare, N., Mate, C.J.K.T., et al: ‘Physico-chemical characterization and microbiological evaluataion of gum ghatti as potential food additive’, Multilogic in Science, 2018, 8, (Special (E)), pp. 316319.
    13. 13)
      • 12. Kora, A.J., Beedu, S.R., Jayaraman, A.: ‘Size-controlled green synthesis of silver nanoparticles mediated by Gum ghatti (Anogeissus latifolia) and its biological activity’, Org. Med. Chem. Lett., 2012, 2, (1), p. 17.
    14. 14)
      • 6. Kora, A.J., Arunachalam, J.: ‘Green fabrication of silver nanoparticles by gum tragacanth (Astragalus gummifer): a dual functional reductant and stabilizer’, J. Nanomateri., 2012, 2012, p. 8.
    15. 15)
      • 21. Pandey, S., Mishra, S.B.: ‘Catalytic reduction of p-nitrophenol by using platinum nanoparticles stabilised by guar gum’, Carbohydr. Polym., 2014, 113, pp. 525531.
    16. 16)
      • 19. Dauthal, P., Mukhopadhyay, M.: ‘Biofabrication, characterization, and possible bio-reduction mechanism of platinum nanoparticles mediated by agro-industrial waste and their catalytic activity’, J. Ind. Eng. Chem., 2015, 22, pp. 185191.
    17. 17)
      • 25. Deng, H.-H., Li, G.-W., Hong, L., et al: ‘Colorimetric sensor based on dual-functional gold nanoparticles: analyte-recognition and peroxidase-like activity’, Food Chem., 2014, 147, pp. 257261.
    18. 18)
      • 9. Kaur, L., Singh, J., Singh, H.: ‘Characterization of Gum ghatti (Anogeissus latifolia): a structural and rheological approach’, J. Food Sci., 2009, 74, (6), pp. E328E332.
    19. 19)
      • 16. Girilal, M., Mohammed Fayaz, A., Mohan Balaji, P., et al: ‘Augmentation of Pcr efficiency using highly thermostable gold nanoparticles synthesized from a thermophilic bacterium, Geobacillus stearothermophilus’, Colloid. Surf. B, 2013, 106, pp. 165169.
    20. 20)
      • 14. Kora, A.J., Rastogi, L.: ‘Catalytic degradation of anthropogenic dye pollutants using palladium nanoparticles synthesized by gum olibanum, a glucuronoarabinogalactan biopolymer’, Ind. Crops Products, 2016, 81, pp. 110.
    21. 21)
      • 28. Zhao, Y., Ye, C., Liu, W., et al: ‘Tuning the composition of aupt bimetallic nanoparticles for antibacterial application’, Angew Chem (Int ed. Engl), 2014, 53, (31), pp. 81278131.
    22. 22)
      • 5. Kora, A.J., Rastogi, L.: ‘Peroxidase activity of biogenic platinum nanoparticles: a colorimetric probe towards selective detection of mercuric ions in water samples’, Sens. Act. B, 2018, 254, pp. 690700.
    23. 23)
      • 4. Kora, A.J., Rastogi, L.: ‘Green synthesis of palladium nanoparticles using Gum ghatti (Anogeissus latifolia) and its application as an antioxidant and catalyst’, Arab. J. Chem., 2018, 11, (7), pp. 10971106.
    24. 24)
      • 11. Kora, A.J.: ‘Gum ghatti (Anogeissus latifolia), a proteinaceous edible biopolymer and its multifaceted biological applications’, in Mishra, A.K., Hussain, C.M., Mishra, S.B. (Eds.): ‘Biopolymers: structure, performance and applications’ (Nova Science Publishers, Inc., New York, USA, 2017), 155172.
    25. 25)
      • 17. Kambli, P., Kelkar-Mane, V.: ‘Nanosized Fe3O4 an efficient PCR yield enhancer – comparative study with Au, Ag nanoparticles’, Colloid. Surf. B, 2016, 141, pp. 546552.
    26. 26)
      • 1. Vigneshwaran, N., Nachane, R.P., Balasubramanya, R.H., et al: ‘A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch’, Carbohydr. Res., 2006, 341, (12), pp. 20122018.
    27. 27)
      • 3. Kora, A.J., Sashidhar, R.B., Arunachalam, J.: ‘Gum kondagogu (Cochlospermum gossypium): a template for the green synthesis and stabilization of silver nanoparticles with antibacterial application’, Carbohydr. Polym., 2010, 82, (3), pp. 670679.
    28. 28)
      • 18. Min, J.S., Kim, K.S., Kim, S.W., et al: ‘Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi’, Plant Pathol. J., 2009, 25, (4), pp. 376380.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5407
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5407
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading