access icon free Mn-doped ZnS quantum dots-chlorin e6 shows potential as a treatment for chondrosarcoma: an in vitro study

Chondrosarcoma is the second-most malignant cancer of the bone and routine treatments such as chemotherapy and radiotherapy have not responded to the treatment of this cancer. Due to the resistance of chondrosarcoma to radiotherapy, the combination of therapeutic methods has been considered in recent years. In this study, a novel combination approach is used that allows photodynamic therapy to be activated by X-rays. The synthesis of Mn-doped zinc sulphide (ZnS) quantum dots was carried out and chlorin e6 photosensitiser attached by covalent and non-covalent methods and their application as an intracellular light source for photodynamic activation was investigated. The toxicity of each nanoparticles was evaluated on chondrosarcoma cancer cells (SW1353) before and after radiation. Also, the effect nanoparticle-photosensitiser conjugated type was investigated in the therapeutic efficacy. The characterisation test (SEM, TEM, EDS, TGA, XRD and ICP analyses) was shown successful synthesis of Mn-doped ZnS quantum dots. Chondrosarcoma cancer cell viability was significantly reduced when cells were treated with MPA-capped Mn-doped ZnS quantum dots-chlorin e6 with spermine linker and with covalent attachment (P ≤ 0.001). These results indicate that X-ray can activate the quantum dot complexes for cancer treatment, which can be a novel method for treatment of chondrosarcoma.

Inspec keywords: semiconductor quantum dots; quantum dots; cancer; nanofabrication; scanning electron microscopy; ultraviolet spectra; zinc compounds; laser applications in medicine; bone; transmission electron microscopy; fluorescence; cellular biophysics; photodynamic therapy; II-VI semiconductors; drugs; nanomedicine; X-ray diffraction; nanoparticles; cadmium compounds; tumours; manganese; biomedical materials; photochemistry

Other keywords: cancer treatment; photodynamic activation; radiotherapy; malignant cancer; chondrosarcoma cancer cells; Mn-doped zinc sulphide quantum dots; chondrosarcoma cancer cell viability; nanoparticle-photosensitiser conjugated type; routine treatments; ZnS:Mn; quantum dot complexes; ZnS; therapeutic methods; Mn; noncovalent methods; MPA-capped Mn-doped ZnS quantum dots-chlorin e6; in vitro study

Subjects: Interactions with radiations at the biomolecular level; Cellular biophysics; Radiation therapy; Optical and laser radiation (biomedical imaging/measurement); Radiation therapy; Optical and laser radiation (medical uses); Low-dimensional structures: growth, structure and nonelectronic properties; Other methods of nanofabrication; Patient diagnostic methods and instrumentation; Physical chemistry of biomolecular solutions and condensed states; Biomedical materials; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Biological and medical applications of lasers; Nanotechnology applications in biomedicine; Electromagnetic radiation spectrometry (chemical analysis)

References

    1. 1)
      • 22. Clement, S., Chen, W., Deng, W., et al: ‘X-ray radiation-induced and targeted photodynamic therapy with folic acid-conjugated biodegradable nanoconstructs’, Int. J. Nanomedicine, 2018, 13, pp. 35533570.
    2. 2)
      • 15. Baskar, R., Lee, K., Yeo, R., et al: ‘Cancer and radiation therapy: current advances and future directions’, Int. J. Med. Sci., 2012, 9, (3), pp. 193199.
    3. 3)
      • 29. Wageh, S., Ling, Z.S., Rong, X.X.: ‘Growth and optical properties of colloidal ZnS nanoparticles’, J. Cryst. Growth, 2003, 255, (3–4), pp. 332337.
    4. 4)
      • 3. Gelderblom, H., Hogendoorn, P., Dijkstra, S., et al: ‘The clinical approach towards chondrosarcoma’, Oncologist, 2008, 13, pp. 320329.
    5. 5)
      • 28. Mote, V., Purushotham, Y., Dole, B.: ‘Structural, morphological and optical properties of Mn doped ZnS nanocrystals’, Cerâmica, 2013, 59, pp. 614619.
    6. 6)
      • 24. Maity, R., Chattopadhya, K.: ‘Synthesis and optical characterization of ZnS and ZnS:Mn nanocrystalline thin films by chemical route’, Nanotechnology, 2004, 15, pp. 812816.
    7. 7)
      • 14. Plaetzer, K., Krammer, B., Berlanda, J., et al: ‘Photophysics and photochemistry of photodynamic therapy: fundamental aspects’, Lasers Med. Sci., 2009, 24, pp.259268.
    8. 8)
      • 18. Chen, W.: ‘Nanoparticle self-lighting photodynamic therapy for cancer treatment’, J. Biomed. Nanotechnol., 2008, 4, pp. 369376.
    9. 9)
      • 1. Eshghyar, N., Mohebbi., : ‘Chondrosarcoma, a 30 year retrospective study in cancer institute Imam Khomeini hospital and faculty of dentistry of Tehran University of medical sciences’, J. Dent. (Tehran), 2004, 1, (3), pp. 4347.
    10. 10)
      • 5. Alavi, S. J., Sadeghian, H., Seyedi, S.M., et al: ‘Magnetically recoverable AlFe/Te nanocomposite as a new catalyst for the facile esterification reaction under neat conditions’, App Orgmet. Chem., 2018, 32, (3), p. e4167.
    11. 11)
      • 20. Chen, W., Zhang, J.: ‘Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment’, J. Nanosci. Nanotechnol., 2006, 6, (4), pp. 11591166.
    12. 12)
      • 11. Juzenas, P., Chen, W., Sun, Y., et al: ‘Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer’, Adv. Drug Deliv. Rev., 2008, 60, (15), pp. 16001614.
    13. 13)
      • 8. Michalet, X., Pinaud, F.F., Bentolila, L.A., et al: ‘Quantum dots for live cells, in vivo imaging, and diagnostics’, Science, 2005, 307, (5709), pp. 538544.
    14. 14)
      • 26. Madrakian, T., Maleki, S., Afkhami, A.: ‘Surface decoration of cadmium-sulfide quantum dots with 3-mercaptopropionic acid as a fluorescence probe for determination of ciprofloxacin in real samples’, Sens. Actuators B, 2017, 243, pp. 1421.
    15. 15)
      • 17. Xu, J., Gao, J., Wei, Q.: ‘Combination of photodynamic therapy with radiotherapy for cancer treatment’, J. Nanomater., 2016, http://dx.doi.org/10.1155/2016/8507924.
    16. 16)
      • 6. Alavi, S. J., Khalili, N., Kazemi Oskuee, R., et al: ‘Role of polyethyleneimine (PEI) in synthesis of zinc oxide nanoparticles and their cytotoxicity effects’, Ceram. Int.., 2015, 41, (8), p. 10222.
    17. 17)
      • 27. Trivedi, M., Tallapragada, R., Branton, A., et al: ‘Characterization of atomic and physical properties of biofield energy treated manganese sulfide powder’, Am. J. Phys. Appl., 2015, 3, (6), pp. 215220.
    18. 18)
      • 4. Alavi, S. J., Gholami, L., Askarian, S., et al: ‘Hyperbranched–dendrimer architectural copolymer gene delivery using hyperbranched PEI conjugated to poly (propyleneimine) dendrimers: synthesis, characterization, and evaluation of transfection efficiency’, Nanopart Res., 2017, 19, (49), DOI: 10.1007/s11051-017-3739-4.
    19. 19)
      • 7. Irshad, M., Iqbal, N., Mujahid, A., et al: ‘Molecularly imprinted nanomaterials for sensor applications’, Nanomaterials (Basel), 2013, 3, (4), pp. 615637.
    20. 20)
      • 2. Solooki, S., Vosoughi, A.R., Masoomi, V.: ‘Epidemiology of musculoskeletal tumors in Shiraz, south of Iran’, Indian J. Med. Paediatr. Oncol., 2011, 32, (4), pp. 187191.
    21. 21)
      • 10. He, X., Ma, N.: ‘An overview of recent advances in quantum dots for biomedical applications’, Colloids Surf. B Biointerfaces, 2014, 124, pp. 118131.
    22. 22)
      • 25. Gong, Y., Fan, Z.: ‘Room-temperature phosphorescence turn-on detection of DNA based on riboflavin-modulated manganese doped zinc sulfide quantum dots’, J. Fluoresc., 2016, 26, (2), pp. 385393.
    23. 23)
      • 13. Lucky, S., Chee Soo, K., Zhang, Y.: ‘Nanoparticles in photodynamic therapy’, Chem. Rev., 2015, 115, (4), pp. 19902042.
    24. 24)
      • 16. Rosenblatt, E., Zubizarreta, E.: ‘Radiotherapy in cancer care: facing the global challenge’ (IAEA Press, Austria, 2017).
    25. 25)
      • 12. Agostinis, P., Berg, K., Cengel, A., et al: ‘Photodynamic therapy of cancer: An update’, CA Cancer J. Clin., 2011, 61, pp. 250281.
    26. 26)
      • 23. Zou, X., Yao, M., Ma, L., et al: ‘X-ray-induced nanoparticle-based photodynamic therapy of cancer’, Nanomedicine, 2014, 9, (15), pp. 23392351.
    27. 27)
      • 30. Mallidi, S., Anbil, S., Bulin, A.N., et al: ‘Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy’, Theranostic, 2016, 6, (13), pp. 24582487.
    28. 28)
      • 21. Wang, G., Nguyen, H., Chen, H., et al: ‘X-Ray induced photodynamic therapy: A combination of radiotherapy and photodynamic therapy’, Theranostics, 2016, 6, (13), pp. 22952305.
    29. 29)
      • 19. Morgan, N.Y., Kramer-Marek, G., Smith, P.D., et al: ‘Nanoscintillator conjugates as photodynamic therapy-based radiosensitizers: calculation of required physical parameters’, Radiat. Res., 2009, 171, pp. 236244.
    30. 30)
      • 9. Frecker, T., Bailey, D., Arzeta-Ferrer, X., et al: ‘Review-quantum dots and their application in lighting, displays, and biology’, ECS J. Solid State Sci. Technol., 2016, 5, (1), pp. R3019R3031.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5387
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5387
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading