access icon free Electrochemical strategy with zeolitic imidazolate framework-8 and ordered mesoporous carbon for detection of xanthine

An accurate, safe, environmentally friendly, fast and sensitive electrochemical biosensors were developed to detect xanthine in serum. The metal-organic framework ZIF-8 was synthesised and elemental gold was supported on the surface of ZIF-8 by reduction method to synthesise Ag-ZIF-8. The mesoporous carbon material and the synthesised Ag-ZIF-8 were, respectively, applied to a glassy carbon electrode to construct biosensors. The constructed biosensor has a good linear relation in the range of 1–280 μmol l−1 of xanthine and the detection limit is 0.167 μmol l−1. The relative standard deviation value in serum samples was <5%, and the recoveries were 96–106%, indicating the good selectivity, stability and reproducibility of this electrochemical biosensor.

Inspec keywords: organic compounds; voltammetry (chemical analysis); electrochemical sensors; zeolites; nanofabrication; nanosensors; biosensors; electrochemical electrodes; carbon; reduction (chemical); mesoporous materials; nanoparticles; gold

Other keywords: glassy carbon electrode; reduction method; ordered mesoporous carbon; zeolitic imidazolate framework-8; Ag; metal-organic framework ZIF-8; C; sensitive electrochemical biosensors; mesoporous carbon material; elemental gold; linear relation; serum samples; detection limit; xanthine

Subjects: Specific chemical reactions; reaction mechanisms; Biosensors; Electrochemical analytical methods; Biosensors; Electrochemistry and electrophoresis; Micromechanical and nanomechanical devices and systems; Microsensors and nanosensors; Chemical sensors; Other methods of nanofabrication; Structure of powders and porous materials; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Chemical sensors

References

    1. 1)
      • 21. Hobday, C.L., Woodall, C.H., Lennox, M.J., et al: ‘Understanding the adsorption process in Zif-8 using high pressure crystallography and computational modelling’, Nat. Commun., 2018, 9, (1), p. 1614.
    2. 2)
      • 24. Park, S.K., Lee, J., Hwang, T., et al: ‘Scalable synthesis of honeycomb-like ordered mesoporous carbon nanosheets and their application in Lithium-Sulfur batteries’, ACS Appl. Mater. Interfaces, 2017, 9, (3), pp. 24302438.
    3. 3)
      • 2. Otaki, Y., Watanabe, T., Kinoshita, D., et al: ‘Association of plasma Xanthine oxidoreductase activity with severity and clinical outcome in patients with chronic heart failure’, Int. J. Cardiol., 2017, 228, pp. 151157.
    4. 4)
      • 19. Van Cleuvenbergen, S., Smith, Z.J., Deschaume, O., et al: ‘Morphology and structure of zif-8 during crystallisation measured by dynamic angle-resolved second harmonic scattering’, Nat. Commun., 2018, 9, (1), p. 2014.
    5. 5)
      • 8. Salinas-Castillo, A., Pastor, I., Mallavia, R., et al: ‘Immobilization of a trienzymatic system in a Sol-gel matrix: a new fluorescent biosensor for Xanthine’, Biosens. Bioelectron., 2008, 24, (4), pp. 10591062.
    6. 6)
      • 17. Fortea-Pérez, F.R., Mon, M., Ferrando-Soria, J., et al: ‘The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry’, Nat. Mater., 2017, 16, (7), pp. 760766.
    7. 7)
      • 20. Bhardwaj, N., Bhardwaj, S.K., Mehta, J., et al: ‘MOF-bacteriophage biosensor for highly sensitive and specific detection of Staphylococcus Aureus’, ACS Appl. Mater. Interfaces, 2017, 9, (39), pp. 3358933598.
    8. 8)
      • 11. Jagadeesh, R.V., Murugesan, K., Alshammari, A.S., et al: ‘MOF-derived cobalt nanoparticles catalyze a general synthesis of amines’, Science, 2017, 358, (6361), p. 326.
    9. 9)
      • 23. Ndamanisha, J.C., Guo, L.P.: ‘Ordered mesoporous carbon for electrochemical sensing: a review’, Anal. Chim. Acta., 2012, 747, pp. 1928.
    10. 10)
      • 9. Stock, N., Biswas, S.: ‘Synthesis of metal-organic frameworks (MOFs): routes to Various MOF topologies, morphologies, and composites’, Chem. Rev., 2012, 112, (2), pp. 933969.
    11. 11)
      • 1. Ma, L., Hu, J., Li, J., et al: ‘Bisphenol a promotes hyperuricemia via activating Xanthine oxidase’, FASEB J., 2018, 32, (2), pp. 10071016.
    12. 12)
      • 5. Mu, S., Shi, Q.: ‘Xanthine biosensor based on the direct oxidation of Xanthine at an electrogenerated oligomer film’, Biosens. Bioelectron., 2013, 47, pp. 429435.
    13. 13)
      • 13. Lu, Y., Zhan, W., He, Y., et al: ‘MOF-templated synthesis of porous Co(3)O(4) concave nanocubes with high specific surface area and their gas sensing properties’, ACS Appl. Mater. Interfaces, 2014, 6, (6), pp. 41864195.
    14. 14)
      • 3. Doehner, W., Jankowska, E.A., Springer, J., et al: ‘Uric acid and Xanthine oxidase in heart failure – emerging data and therapeutic implications’, Int. J. Cardiol., 2016, 213, pp. 1519.
    15. 15)
      • 6. Devi, R., Thakur, M., Pundir, C.S.: ‘Construction and application of an amperometric Xanthine biosensor based on zinc oxide nanoparticles-polypyrrole composite film’, Biosens. Bioelectron., 2011, 26, (8), pp. 34203426.
    16. 16)
      • 22. Jiang, M., Li, H., Zhou, L., et al: ‘Hierarchically porous graphene/Zif-8 hybrid aerogel: preparation, Co2 uptake capacity, and mechanical property’, ACS Appl. Mater. Interfaces, 2018, 10, (1), pp. 827834.
    17. 17)
      • 18. Sheberla, D., Bachman, J.C., Elias, J.S., et al: ‘Conductive MOF electrodes for stable supercapacitors with high areal capacitance’, Nat. Mater., 2017, 16, (2), pp. 220224.
    18. 18)
      • 27. Zhang, P., Wang, L., Yang, S., et al: ‘Solid-state synthesis of ordered mesoporous carbon catalysts via a mechanochemical assembly through coordination cross-linking’, Nat. Commun., 2017, 8, p. 932.
    19. 19)
      • 26. Fang, Y., Huang, X., Zeng, Q., et al: ‘Metallic nanocrystallites-incorporated ordered mesoporous carbon as labels for a sensitive simultaneous multianalyte electrochemical immunoassay’, Biosens. Bioelectron., 2015, 73, pp. 7178.
    20. 20)
      • 4. Richette, P., Frazier, A., Bardin, T.: ‘Impact of anti-inflammatory therapies, Xanthine oxidase inhibitors and other urate-lowering therapies on cardiovascular diseases in gout’, Curr. Opin. Rheumatol., 2015, 27, (2), pp. 170174.
    21. 21)
      • 25. Zhang, D., Zheng, L., Ma, Y., et al: ‘Synthesis of nitrogen- and Sulfur-Codoped 3d cubic-ordered mesoporous carbon with superior performance in supercapacitors’, ACS Appl. Mater. Interfaces, 2014, 6, (4), pp. 26572665.
    22. 22)
      • 12. Hu, G.B., Xiong, C.Y., Liang, W.B., et al: ‘Highly stable mesoporous luminescence-functionalized MOF with excellent electrochemiluminescence property for ultrasensitive immunosensor construction’, ACS Appl. Mater. Interfaces, 2018, 10, (18), pp. 1591315919.
    23. 23)
      • 7. Villalonga, R., Diez, P., Eguilaz, M., et al: ‘Supramolecular immobilization of Xanthine oxidase on electropolymerized matrix of functionalized hybrid gold nanoparticles/single-walled carbon nanotubes for the preparation of electrochemical biosensors’, ACS Appl. Mater. Interfaces, 2012, 4, (8), pp. 43124319.
    24. 24)
      • 15. Liu, G., Chernikova, V., Liu, Y., et al: ‘Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations’, Nat. Mater., 2018, 17, (3), pp. 283289.
    25. 25)
      • 10. Dong, S., Peng, L., Wei, W., et al: ‘Three MOF-templated carbon nanocomposites for potential platforms of enzyme immobilization with improved electrochemical performance’, ACS Appl. Mater. Interfaces, 2018, 10, (17), pp. 1466514672.
    26. 26)
      • 14. Alqadami, A.A., Naushad, M., Alothman, Z.A., et al: ‘Novel metal-organic framework (MOF) based composite material for the sequestration of U(Vi) and Th(Iv) metal ions from aqueous environment’, ACS Appl. Mater. Interfaces, 2017, 9, (41), pp. 3602636037.
    27. 27)
      • 16. Wang, H., Dong, X., Lin, J., et al: ‘Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers’, Nat. Commun., 2018, 9, (1), p. 435.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5342
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5342
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading