access icon free Brain targeted delivery of anticancer drugs: prospective approach using solid lipid nanoparticles

A brain tumour is amongst most devastating and challenging condition to overcome with suitable treatment as the drug has to cross the blood–brain barrier (BBB) with several physiological barriers like opsonisation by the reticuloendothelial system. Presently various techniques such as surgical, chemotherapeutic agents, and radiotherapy techniques have performed to extend the lifespan of patients diagnosed with glioblastoma, which did not maximise the overall survival of patients with a tumour. Nanotechnology is relied upon to diminish the requirement for intrusive methods for conveyance of therapeutics to the central nervous system. Colloidal nanocarriers sizing range 1–1000 nm have been utilised to cross BBB delivers the drug at cell levels with enhanced bioavailability and reduced toxicity. However, solid lipid nanoparticles (SLNs) are considered a highly flexible carrier for more successful remedially in brain tumour. The treatment of a brain tumour via SLNs is gaining greater potency due to its inimitable size and lipidic nature. This review focuses and represents the current strategies of SLNs in the brain tumour treatment with appropriate techniques adopted are highlighted. Based on this review, the authors concluded that SLNs embrace exclusive promising lipidic nanocarrier that could be utilised to target a brain tumour effectively.

Inspec keywords: molecular biophysics; nanomedicine; drug delivery systems; radiation therapy; cancer; neurophysiology; blood; colloids; biomedical materials; nanoparticles; drugs; tumours; nanofabrication; brain; cellular biophysics

Other keywords: central nervous system; colloidal nanocarriers sizing range 1–1000 nm; brain tumour treatment; chemotherapeutic agents; surgical agents; reticuloendothelial system; brain targeted delivery; physiological barriers; brain tumour therapeutical uses; size 1.0 nm to 1000.0 nm; anticancer drugs; blood–brain barrier; drug; lipidic nature; radiotherapy techniques; prospective approach; lipidic nanocarrier; BBB; solid lipid nanoparticles

Subjects: Biomedical materials; Patient care and treatment; Biophysics of neurophysiological processes; Nanotechnology applications in biomedicine; Patient care and treatment; Radiation therapy; Radiation therapy

References

    1. 1)
      • 38. Kaur, I.P., Bhandari, R., Bhandari, S., et al: ‘Potential of solid lipid nanoparticles in brain targeting’, J. Control. Release, 2008, 127, (2), pp. 97109.
    2. 2)
      • 46. Di, L., Kerns, E.H., Fan, K., et al: ‘High throughput artificial membrane permeability assay for blood brain barrier’, Eur. J. Med. Chem., 2003, 38, (3), pp. 223232.
    3. 3)
      • 6. ‘Brain-spinal statistics’. Available at http://www.cancer.ca/en/cancer-information/cancer-type/brain-spinal/statistics/?region=on, accessed on 08 October, 2018.
    4. 4)
      • 23. Vieira, D.B., Gamarra, L.F.: ‘Advances in the use of nanocarriers for cancer diagnosis and treatment’, Einstein, 2016, 14, (1), pp. 99103.
    5. 5)
      • 24. Pérez-Herrero, E., Fernández-Medarde, A.: ‘Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy’, Eur. J. Pharm. Biopharm., 2015, 93, pp. 5279.
    6. 6)
      • 92. Chertok, B., David, A.E., Yang, V.C.: ‘Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration’, Biomaterials, 2010, 31, (24), pp. 63176324.
    7. 7)
      • 22. Narang, A.S., Mahato, R.I.: ‘Targeted delivery of small and macromolecular drugs’ (CRC Press, Boca Raton, FL, 2010). Available at https://books.google.co.in/books?id=tY_LBQAAQBAJ&source=gbs_navlinks_s.
    8. 8)
      • 58. Kuo, Y.-C., Liang, C.-T.: ‘Catanionic solid lipid nanoparticles carrying doxorubicin for inhibiting the growth of U87MG cells’, Colloids Surf. B, Biointerfaces, 2011, 85, (2), pp. 131137.
    9. 9)
      • 68. Battaglia, L., Gallarate, M., Peira, E., et al: ‘Solid lipid nanoparticles for potential doxorubicin delivery in glioblastoma treatment: preliminary In vitro studies’, J. Pharm. Sci., 2014, 103, (7), pp. 21572165.
    10. 10)
      • 13. ‘Brain tumor - introduction’. Available at https://www.cancer.net/cancer-types/brain-tumor/view-all, accessed 08 October 2018.
    11. 11)
      • 73. Boskovitz, A., Wikstrand, C.J., Kuan, C.-T., et al: ‘Monoclonal antibodies for brain tumor treatment’, Expert. Opin. Biol. Ther., 2004, 4, (9), pp. 14531471.
    12. 12)
      • 28. Vashosaz, J., Taymouri, S., Najafabadi, A.J., et al: ‘Efavirenz oral delivery via lipid nanocapsules: formulation, optimisation, and ex-vivo gut permeation study’, IET Nanobiotechnol., 2018, 12, (6), pp. 795806.
    13. 13)
      • 95. Vleeschouwer, S.D., Rapp, M., Sorg, R.V., et al: ‘Dendritic cell vaccination in patients with malignant gliomas’, Neurosurgery, 2006, 59, (5), pp. 9881000.
    14. 14)
      • 83. Sakurai, Y., Hatakeyama, H., Sato, Y., et al: ‘RNAi-mediated gene knockdown and anti-angiogenic therapy of RCCs using a cyclic RGD-modified liposomal-siRNA system’, J. Control. Release, 2014, 173, pp. 110118.
    15. 15)
      • 86. Okamoto, A., Asai, T., Kato, H., et al: ‘Antibody-modified lipid nanoparticles for selective delivery of siRNA to tumors expressing membrane-anchored form of HB-EGF’, Biochem. Biophys. Res. Commun., 2014, 449, (4), pp. 460465.
    16. 16)
      • 32. Aboud, H.M., El komy, M.H., Ali, A.A., et al: ‘Development, optimization, and evaluation of carvedilol-loaded solid lipid nanoparticles for intranasal drug delivery’, AAPS PharmSciTech., 2016, 17, (6), pp. 13531365.
    17. 17)
      • 60. Yvon, A.-M. C., Wadsworth, P., Jordan, M.A.: ‘Taxol suppresses dynamics of individual microtubules in living human tumor cells’, Mol. Biol. Cell, 1999, 10, (4), pp. 947959.
    18. 18)
      • 12. ‘Brain tumor treatment’. Available at https://www.radiologyinfo.org/en/info.cfm?pg=thera-brain#therapy-developments, accessed 08 October 2018.
    19. 19)
      • 8. Davis, M.E.: ‘Glioblastoma: overview of disease and treatment’, Clin. J. Oncol. Nurs., 2016, 20, (5), pp. S2S8.
    20. 20)
      • 80. Rothenberger, S., Food, M.R., Gabathuler, R., et al: ‘Coincident expression and distribution of melanotransferrin and transferrin receptor in human brain capillary endothelium’, Brain Res., 1996, 712, (1), pp. 117121.
    21. 21)
      • 71. Venishetty, V.K., Samala, R., Komuravelli, R., et al: ‘β-Hydroxybutyric acid grafted solid lipid nanoparticles: A novel strategy to improve drug delivery to brain’, Nanomed. Nanotechnol. Biol. Med., 2013, 9, (3), pp. 388397.
    22. 22)
      • 5. ‘Brain, other CNS and intracranial tumors statistics’. Available at https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/brain-other-cns-and-intracranial-tumors’, accessed on 08 October, 2018.
    23. 23)
      • 2. Ostrom, Q.T., Gittleman, H., Xu, J., et al: ‘CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014’, Neuro Oncol., 2017, 18, (s5), pp. iv1iv89.
    24. 24)
      • 87. Liu, D., Liu, F., Liu, Z., et al: ‘Tumor specific delivery and therapy by double-targeted nanostructured lipid carriers with anti-VEGFR-2 antibody’, Mol. Pharm., 2011, 8, (6), pp. 22912301.
    25. 25)
      • 91. Liu, H.-L., Hua, M.-Y., Yang, H.-W., et al: ‘Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain’, Proc. Natl. Acad. Sci., 2010, 107, (34), pp. 1520515210.
    26. 26)
      • 90. Barth, R.F., Mi, P., Yang, W.: ‘Boron delivery agents for neutron capture therapy of cancer’, Cancer Commun., 2018, 38, (1), pp. 115.
    27. 27)
      • 70. Miettinen, S., Grenman, S., Ylikomi, T.: ‘Inhibition of P-glycoprotein-mediated docetaxel efflux sensitizes ovarian cancer cells to concomitant docetaxel and SN-38 exposure’, Anti-Cancer Drugs, 2009, 20, (4), pp. 267276.
    28. 28)
      • 25. Northfelt, D.W., Martin, F.J., Working, P., et al: ‘Doxorubicin encapsulated in liposomes containing surface-found polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi's sarcoma’, J. Clin. Pharmacology, 1996, 36, (1), pp. 5563.
    29. 29)
      • 63. Jain, A., Singhai, P., Gurnany, E., et al: ‘Transferrin-tailored solid lipid nanoparticles as vectors for site-specific delivery of temozolomide to brain’, J. Nanoparticle Res., 2013, 15, (3), pp. 19.
    30. 30)
      • 4. ‘Mazoe Ford’. Available at http://www.abc.net.au/news/2017-05-14/low-survival-cancers-forgotten-senate-committee-to-be-told/8525080, accessed 14 May 2017.
    31. 31)
      • 75. Karkan, D., Pfeifer, C., Vitalis, T.Z., et al: ‘A unique carrier for delivery of therapeutic compounds beyond the blood-brain barrier’, PLoS ONE, 2008, 3, (6), e2469, pp. 114.
    32. 32)
      • 57. Kuo, Y.-C., Liang, C.-T.: ‘Inhibition of human brain malignant glioblastoma cells using carmustine-loaded catanionic solid lipid nanoparticles with surface anti-epithelial growth factor receptor’, Biomaterials, 2011, 32, (12), pp. 33403350.
    33. 33)
      • 18. Ganesan, P., Ramalingam, P., Karthivashan, G., et al: ‘Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases’, Int. J. Nanomed., 2018, 13, pp. 15691583.
    34. 34)
      • 48. Annovazzi, L., Schiffer, D., Mellai, M., et al: ‘Solid lipid nanoparticles loaded with antitumor lipophilic prodrugs aimed to glioblastoma treatment: preliminary studies on cultured cells’, J. Nanosci. Nanotechnol., 2017, 17, (5), pp. 36063614.
    35. 35)
      • 50. Natarajan, J., Baskaran, M., Humtsoe, L.C., et al: ‘Enhanced brain targeting efficacy of olanzapine through solid lipid nanoparticles’, Artif. Cells Nanomed. Biotechnol., 2016, 45, (2), pp. 364371.
    36. 36)
      • 14. Gupta, A.H., Kathpalia, H.T.: ‘Recent advances in brain targeted drug delivery systems: a review’, Int J. Pharm. Pharm. Sci., 2014, 6, (2), pp. 5157.
    37. 37)
      • 11. Rahmathulla, G., Hovey, E., Hashemi-Sadraei, N., et al: ‘Bevacizumab in high-grade gliomas: a review of its uses, toxicity assessment, and future treatment challenges’, Onco. Targets Ther., 2013, 6, pp. 371389.
    38. 38)
      • 37. Fatouh, A.M., Elshafeey, A.H., Abdelbary, A.: ‘Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: formulation, optimization and in vivo pharmacokinetics’, Drug Des. Dev. Ther., 2017, 11, pp. 18151825.
    39. 39)
      • 7. Ellor, S.V., Pagano-Young, T.A., Avgeropoulos, N.G.: ‘Glioblastoma: background, standard treatment paradigms, and supportive care considerations’, J. Law Med. Ethics, 2014, 42, (2), pp. 171182.
    40. 40)
      • 33. Yasir, M., Sara, U., Som, I.: ‘Haloperidol loaded solid lipid nanoparticles for nose to brain delivery: stability and in vivo studies’, J. Nanomed. Nanotechnol., 2015, 01, (s7), pp. 19.
    41. 41)
      • 3. ‘Melinda Tea, Stuart Pitson’. Available at https://theconversation.com/three-charts-on-brain-cancer-in-australia-86610’, accessed 14 November 2017.
    42. 42)
      • 78. Kuo, Y.-C., Wang, C.-C.: ‘Carmustine-loaded catanionic solid lipid nanoparticles with serotonergic 1B receptor subtype antagonist for in vitro targeted delivery to inhibit brain cancer growth’, J. Taiwan Inst. Chem. Eng., 2015, 46, pp. 114.
    43. 43)
      • 39. Patel, S., Chavhan, S., Soni, H., et al: ‘Brain targeting of risperidone-loaded solid lipid nanoparticles by intranasal route’, J. Drug Targeting, 2010, 19, (6), pp. 468474.
    44. 44)
      • 62. Venishetty, V.K., Komuravelli, R., Kuncha, M., et al: ‘Increased brain uptake of docetaxel and ketoconazole loaded folate-grafted solid lipid nanoparticles’, Nanomed. Nanotechnol. Biol. Med., 2013, 9, (1), pp. 111121.
    45. 45)
      • 53. Kuo, Y.-C., Hong, T.-Y.: ‘Delivering etoposide to the brain using catanionic solid lipid nanoparticles with surface 5-HT-moduline’, Int. J. Pharm., 2014, 465, (1–2), pp. 132142.
    46. 46)
      • 35. Haque, S., Md, S., Sahni, J.K., et al: ‘Development and evaluation of brain targeted intranasal alginate nanoparticles for treatment of depression’, J. Psychiatr. Res., 2014, 48, (1), pp. 112.
    47. 47)
      • 42. Bhaskar, K., Anbu, J., Ravichandiran, V., et al: ‘Lipid nanoparticles for transdermal delivery of flurbiprofen: formulation, in vitro, ex vivo and in vivo studies’, Lipids Health Dis., 2009, 8, (1), 6, pp. 115.
    48. 48)
      • 89. Lang, P.Y., Gershon, T.R.: ‘A new way to treat brain tumors: targeting proteins coded by microcephaly genes?’, BioEssays, 2018, 40, (5), 1700243, pp. 114.
    49. 49)
      • 67. Bhattacharjee, J., Verma, G., Aswal, V.K., et al: ‘Small angle neutron scattering study of doxorubicin–surfactant complexes encapsulated in block copolymer micelles’, Pramana J. Phys., 2008, 71, (5), pp. 991995.
    50. 50)
      • 10. Lara-Velazquez, M., Al-Kharboosh, R., Jeanneret, S., et al: ‘Advances in brain tumor surgery for glioblastoma in adults’, Brain. Sci., 2017, 7, (12), p. 166.
    51. 51)
      • 93. Mody, V.V., Cox, A., Shah, S., et al: ‘Magnetic nanoparticle drug delivery systems for targeting tumor’, Appl. Nanosci., 2013, 4, (4), pp. 385392.
    52. 52)
      • 61. Singh, I., Swami, R., Pooja, D., et al: ‘Lactoferrin bioconjugated solid lipid nanoparticles: a new drug delivery system for potential brain targeting’, J. Drug Targeting, 2015, 24, (3), pp. 212223.
    53. 53)
      • 29. Gupta, S., Kesarla, R., Chotai, N., et al: ‘Systematic approach for the formulation and optimization of solid lipid nanoparticles of efavirenz by high pressure homogenization using design of experiments for brain targeting and enhanced bioavailability’, BioMed. Res. Int., 2017, 2017, pp. 118.
    54. 54)
      • 76. Tang, Y., Han, T., Everts, M., et al: ‘Directing adenovirus across the blood–brain barrier via melanotransferrin (P97) transcytosis pathway in an in vitro model’, Gene Ther., 2006, 14, (6), pp. 523532.
    55. 55)
      • 82. Kuo, Y.-C., Chao, I.-W.: ‘Conjugation of melanotransferrin antibody on solid lipid nanoparticles for mediating brain cancer malignancy’, Biotechnol. Prog., 2015, 32, (2), pp. 480490.
    56. 56)
      • 54. Kuo, J.S., Chang, C.-H., Lin, Y.-L., et al: ‘Flow cytometric characterization of interactions between U-937 human macrophages and positively charged catanionic vesicles’, Colloids Surf. B, Biointerfaces, 2008, 64, (2), pp. 307313.
    57. 57)
      • 64. Mendoza, A. E.-H., Préat, V., Mollinedo, F., et al: ‘In vitro and in vivo efficacy of edelfosine-loaded lipid nanoparticles against glioma’, J. Control. Release, 2011, 156, (3), pp. 421426.
    58. 58)
      • 43. Singh, A.P., Saraf, S.K., Saraf, S.A.: ‘SLN approach for nose-to-brain delivery of alprazolam’, Drug Deliv. Transl. Res., 2012, 2, (6), pp. 498507.
    59. 59)
      • 34. Zupancic, M., Guilleminault, C.: ‘Agomelatine a preliminary review of a new antidepressant’, CNS Drugs, 2006, 20, (12), pp. 981992.
    60. 60)
      • 45. Chirio, D., Peira, E., Battaglia, L., et al: ‘Lipophilic prodrug of floxuridine loaded into solid lipid nanoparticles: in vitro cytotoxicity studies on different human cancer cell lines’, J. Nanosci. Nanotechnol., 2018, 18, (1), pp. 556563.
    61. 61)
      • 51. Fenart, L., Casanova, A., Dehouck, B., et al: ‘Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood-brain barrier’, J. Pharmacol. Exp. Ther., 1999, 291, pp. 10171022.
    62. 62)
      • 47. Graverini, G., Piazzini, V., Landucci, E., et al: ‘Solid lipid nanoparticles for delivery of andrographolide across the blood–brain barrier: in vitro and in vivo evaluation’, Colloids Surf. B, Biointerfaces, 2018, 161, pp. 302313.
    63. 63)
      • 1. ‘Tom Halkin-Brain Tumor Facts and Figures, May 2018: Incidence, Mortality, and Survival in 2018’. Available at http://blog.braintumor.org/brain-tumor-facts-figures-may-2018-incidence-mortality-and-survival-in-2018/, accessed 24 May 2018.
    64. 64)
      • 40. Illum, L.: ‘Transport of drugs from the nasal cavity to the central nervous system’, Eur. J. Pharm. Sci., 2000, 11, (1), pp. 118.
    65. 65)
      • 56. Agarwal, A., Majumder, S., Agrawal, H., et al: ‘Cationized albumin conjugated solid lipid nanoparticles as vectors for brain delivery of an anti-cancer drug’, Curr. Nanosci., 2011, 7, (1), pp. 7180.
    66. 66)
      • 84. Estep, P., Reid, F., Nauman, C., et al: ‘High throughput solution-based measurement of antibody-antigen affinity and epitope binning’, MAbs, 2013, 5, (2), pp. 270278.
    67. 67)
      • 79. Smith, L.M., Nesterova, A., Alley, S. C., et al: ‘Potent cytotoxicity of an auristatin-containing antibody-drug conjugate targeting melanoma cells expressing melanotransferrin/p97’, Mol. Cancer Ther., 2006, 5, (6), pp. 14741482.
    68. 68)
      • 31. Johnson, N.J., Hanson, L.R., Fery, W.H.: ‘Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures’, Mol. Pharm., 2010, 7, (3), pp. 884893.
    69. 69)
      • 17. Khatak, S., Dureja, H.: ‘Recent techniques and patents on solid lipid nanoparticles as novel carrier for drug delivery’, Recent Pat. Nanotechnol., 2015, 9, pp. 150177.
    70. 70)
      • 27. Mori, N.M., Sheth, N.R., Mendapara, V.P., et al: ‘SLN brain targeting drug delivery for CNS: a novel approach’, Int. Res. J. Pharm., 2014, 5, (9), pp. 658662.
    71. 71)
      • 26. ‘ABRAXANE® for injectable suspension (paclitaxel protein-bound particles for injectable suspension)’. Available at https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/021660s022lbl.pdf.
    72. 72)
      • 65. Jakobsen, J.N., Hasselbalch, B., Stockhausen, M.-T., et al: ‘Irinotecan and bevacizumab in recurrent glioblastoma multiforme’, Expert Opin. Pharmacother., 2011, 12, (5), pp. 825833.
    73. 73)
      • 69. Martins, S.M., Sarmento, B., Nunes, C., et al: ‘Brain targeting effect of camptothecin-loaded solid lipid nanoparticles in rat after intravenous administration’, Eur. J. Pharm. Biopharm., 2013, 85, (3), pp. 488502.
    74. 74)
      • 16. Wang, S.L., Xie, S.Y., Zhu, L.Y., et al: ‘Effects of poly (lactic-co-glycolic acid) as a co-emulsifier on the preparation and hypoglycaemic activity of insulin-loaded solid lipid nanoparticles’, IET Nanobiotechnol., 2009, 3, (4), pp. 103108.
    75. 75)
      • 81. Demeule, M., Poirier, J., Jodoin, J., et al: ‘High transcytosis of melanotransferrin (P97) across the blood–brain barrier’, J. Neurochem., 2002, 83, (4), pp. 924933.
    76. 76)
      • 52. Chirio, D., Gallarate, M., Peira, E., et al: ‘Positive-charged solid lipid nanoparticles as paclitaxel drug delivery system in glioblastoma treatment’, Eur. J. Pharm. Biopharm., 2014, 88, (3), pp. 746758.
    77. 77)
      • 55. Fernandes, C.B., Mandawgade, S., Patravale, V.B.: ‘Solid lipid nanoparticles of etoposide using solvent emulsification diffusion technique for parenteral administration’, Int. J. Pharm. Biosci. Technol., 2013, 1, (1), pp. 2733.
    78. 78)
      • 30. Kumar, T.P., Sirisha, B., Raju, P.N., et al: ‘Nasal drug delivery: a potential route for brain targetting’, Pharm. Innov., 2013, 2, (1), pp. 7785.
    79. 79)
      • 74. Pommier, Y., Leo, E., Zhang, H., et al: ‘Topoisomerases and their poisoning by anticancer and antibacterial drugs’, Chem. Biol., 2010, 17, (5), pp. 421433.
    80. 80)
      • 21. Wang, T., Chen, X., Lu, M., et al: ‘Preparation, characterisation and antibacterial activity of a florfenicol-loaded solid lipid nanoparticle suspension’, IET Nanobiotechnol., 2015, 9, (6), pp. 17.
    81. 81)
      • 85. Bhattacharyya, S., Bhattacharya, R., Curley, S.: ‘Nanoconjugation modulates the trafficking and mechanism of antibody induced receptor endocytosis’, Proc. Natl. Acad. Sci., 2010, 107, (33), pp. 1454114546.
    82. 82)
      • 77. Rolland, Y., Demeule, M., Fenart, L., et al: ‘Inhibition of melanoma brain metastasis by targeting melanotransferrin at the cell surface’, Pigm. Cell Melanoma Res., 2009, 22, (1), pp. 8698.
    83. 83)
      • 9. Stupp, R., Mason, W.P., Bent, M.J., et al: ‘Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma’, N. Engl. J. Med., 2005, 352, pp. 987996.
    84. 84)
      • 44. Song, H., Wei, M., Zhang, N., et al: ‘Enhanced permeability of blood–brain barrier and targeting function of brain via borneol-modified chemically solid lipid nanoparticle’, Int. J. Nanomed., 2018, 13, pp. 18691879.
    85. 85)
      • 49. Battaglia, L., Muntoni, E., Chirio, D., et al: ‘Solid lipid nanoparticles by coacervation loaded with a methotrexate prodrug: preliminary study for glioma treatment’, Nanomedicine, 2017, 12, (6), pp. 639656.
    86. 86)
      • 88. Abdolahpour, S., Toliyat, T., Omidfar, K., et al: ‘Targeted delivery of doxorubicin into tumor cells by nanostructured lipid carriers conjugated to anti-EGFRvIII monoclonal antibody’, Artif. Cells Nanomed. Biotechnol., 2017, 46, (1), pp. 8994.
    87. 87)
      • 41. Illum, L.: ‘Nasal drug delivery – possibilities, problems and solution’, J. Control. Release, 2003, 87, pp. 187198.
    88. 88)
      • 59. Singh, I., Swami, R., Jeengar, M.K., et al: ‘p-Aminophenyl-alpha-D-mannopyranoside engineered lipidic nanoparticles for effective delivery of docetaxel to brain’, Chem. Phys. Lipids, 2015, 188, pp. 19.
    89. 89)
      • 15. Sezer, D.A.: ‘Techniques for the preparation of solid lipid nano and microparticles’ in Sezer, A.D.: ‘Application of Nanotechnology in Drug Delivery.’ (Intech, Italy, 2014, 10.5772/57028), http://dx.doi.org/10.5772/58405.
    90. 90)
      • 36. Johnson, P.H., Quay, S.C.: ‘Advances in nasal drug delivery through tight junction technology’, Expert Opin. Drug Deliv., 2005, 2, (2), pp. 281298.
    91. 91)
      • 97. Pearson, J.R.D., Regad, T.: ‘Targeting cellular pathways in glioblastoma multiforme’, Signal Transduct. Targeted Ther., 2017, 2, 17040, pp. 111.
    92. 92)
      • 96. Cho, D.-Y., Yang, W.-K., Lee, H.-C., et al: ‘Adjuvant immunotherapy with whole-cell lysate dendritic cells vaccine for glioblastoma multiforme: a phase II clinical trial’, World Neurosurg., 2012, 77, (5–6), pp. 736744.
    93. 93)
      • 19. Raut, I.D., Dojad, R.C., Mohite, S.K.: ‘Solid lipid nanoparticles: a promising drug delivery system’, Int J. Pharm. Sci. Res., 2018, 9, (3), pp. 862871.
    94. 94)
      • 20. Gandomi, N., Varshochian, R., Atyabi, F., et al: ‘Solid lipid nanoparticles surface modified with anti-contactin-2 or anti-neurofascin for brain-targeted delivery of medicines’, Pharm. Dev. Technol., 2017, 22, (3), pp. 426435.
    95. 95)
      • 94. ‘Ottawa Hospital Research Institute-Researchers find potential new treatment target for deadly brain cancer. Science Daily’. Available at http://www.sciencedaily.com/releases/2016/04/160425141536.htm, accessed 5 October 2018.
    96. 96)
      • 66. Battaglia, L., Gallarate, M., Peira, E., et al: ‘Bevacizumab loaded solid lipid nanoparticles prepared by the coacervation technique: preliminary in vitro studies’, Nanotechnology, 2015, 26, (25), 255102, pp. 115.
    97. 97)
      • 72. Kharya, P., Jain, A., Gulbake, A., et al: ‘Phenylalanine-coupled solid lipid nanoparticles for brain tumor targeting’, J. Nanoparticle Res., 2013, 15, (11), pp. 112.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5322
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5322
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading