Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Biocompatibility enhancement of graphene oxide-silver nanocomposite by functionalisation with polyvinylpyrrolidone

Several materials such as silver are used to enhance graphene oxide (GO) sheets antimicrobial activity. However, these toxic materials decrease its biocompatibility and hinder its usage in many biological applications. Therefore, there is an urgent need to develop nanocomposites that can preserve both the antimicrobial activity and biocompatibility simultaneously. This work highlights the importance of functionalisation of GO sheets using Polyvinylpyrrolidone (PVP) and decorating them with silver nanoparticles (AgNPs) in order to enhance their antimicrobial activity and biocompatibility at the same time. The structural and morphological characterisations were performed by UV-Visible, Fourier transform infrared (FTIR), and Raman spectroscopic techniques, X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM). The antimicrobial activities of the prepared samples against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans were studied. The cytotoxicity of prepared materials was tested against BJ1 normal skin fibroblasts. The results indicated that the decoration with AgNPs showed a significant increase in the antimicrobial activity of GO and FGO sheets, and functionalisation of GO sheets and GO-Ag nanocomposite with PVP improved the cell viability about 40 and 35%, respectively.

References

    1. 1)
      • 42. Liang, B., Xie, Y., Fang, Z., et al: ‘Assessment of the transport of polyvinylpyrrolidone-stabilised zero-valent iron nanoparticles in a silica sand medium’, J. Nanoparticle Res., 2014, 16, p. 2485.
    2. 2)
      • 21. Ma, J., Zhang, J., Xiong, Z., et al: ‘Preparation, characterization and antibacterial properties of silver-modified graphene oxide’, J. Mater. Chem., 2011, 21, (10), pp. 33503352.
    3. 3)
      • 15. Liu, S., Zeng, T.H., Hofmann, M., et al: ‘Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide’, Membr. Oxidat. Stress, 2011, 5, (9), pp. 69716980.
    4. 4)
      • 33. Nguyen, V.H., Kim, B.K., Jo, Y.L., et al: ‘Preparation and antibacterial activity of silver nanoparticles-decorated graphene composites’, J. Supercrit. Fluids, 2012, 72, pp. 2835.
    5. 5)
      • 17. Bykkam, S., Rao, K. V, Chakra, C.H.S., et al: ‘Synthesis and characterization of graphene oxide and its antimicrobial activity against klebseilla and staphylococus’, Int. J. Adv. Biotechnol. Res, 2013, 4, (1), p. 142.
    6. 6)
      • 30. Mahmoudi, N., Simchi, A.: ‘On the biological performance of graphene oxide-modified chitosan/polyvinyl pyrrolidone nanocomposite membranes: in vitro and in vivo effects of graphene oxide’, Mater. Sci. Eng. C, 2017, 70, pp. 121131.
    7. 7)
      • 20. Liu, L., Liu, J., Wang, Y., et al: ‘Facile synthesis of monodispersed silver nanoparticles on graphene oxide sheets with enhanced antibacterial activity’, New J. Chem., 2011, 35, (7), p. 1418.
    8. 8)
      • 8. Loh, K.P., Bao, Q., Ang, P.K., et al: ‘The chemistry of graphene’, J. Mater. Chem., 2010, 20, (12), pp. 22772289.
    9. 9)
      • 37. Bora, C., Bharali, P., Baglari, S., et al: ‘Strong and conductive reduced graphene oxide/polyester resin composite films with improved mechanical strength, thermal stability and its antibacterial activity’, Compos. Sci. Technol., 2013, 87, pp. 17.
    10. 10)
      • 14. Hu, W., Peng, C., Luo, W., et al: ‘Graphene-based antibacterial paper’, ACS Nano, 2010, 4, (7), pp. 43174323.
    11. 11)
      • 13. Ruiz, O.N., Fernando, K.A.S., Wang, B., et al: ‘Graphene oxide: a nonspecific enhancer of cellular growth’, ACS Nano, 2011, 5, (10), pp. 81008107.
    12. 12)
      • 25. Li, C., Wang, X., Chen, F., et al: ‘The antifungal activity of graphene oxide-silver nanocomposites’, Biomaterials, 2013, 34, (15), pp. 38823890.
    13. 13)
      • 22. Ma, L.L., Zhu, Z., Su, M., et al: ‘Preparation of graphene oxide-silver nanoparticle nanohybrids with highly antibacterial capability’, Talanta, 2013, 117, pp. 449455.
    14. 14)
      • 41. Christelle, M.L., Marand, E., Oyama, H.T.: ‘Spectroscopic characterization of molecular interdiffusion at a poly(vinylpyrrolidone)/vinyl ester interface’, Polymer (Guildf)., 1999, 40, pp. 10951108.
    15. 15)
      • 43. Wu, H.-D., Wu, I.-D., Chang, F.-C.: ‘The interaction behavior of polymer electrolytes composed of poly(vinyl pyrrolidone) and lithium perchlorate (LiClO4)’, Polymer (Guildf)., 2001, 42, pp. 555562.
    16. 16)
      • 19. Das, M.R., Sarma, R.K., Saikia, R., et al: ‘Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity’, Colloids Surfaces B Biointerfaces, 2011, 83, (1), pp. 1622.
    17. 17)
      • 18. Marques, P.A.A.P., Gonçalves, G., Cruz, S., et al: ‘Functionalized Graphene Nanocomposites’, in Advances in Nanocomposite Technology, 2011, pp. 248272.
    18. 18)
      • 29. Zhi, X., Fang, H., Bao, C., et al: ‘The immunotoxicity of graphene oxides and the effect of PVP-coating’, Biomaterials, 2013, 34, (21), pp. 52545261.
    19. 19)
      • 9. Lerf, A., He, H., Forster, M., et al: ‘Structure of graphite oxide revisited’, J. Phys. Chem. B, 1998, 102, (23), pp. 44774482.
    20. 20)
      • 27. Kuila, T., Bose, S., Mishra, A.K., et al: ‘Chemical functionalization of graphene and its applications’, Prog. Mater. Sci., 2012, 57, (7), pp. 10611105.
    21. 21)
      • 40. Mohanty, J.R., Das, S.N., Das, H.C., et al: ‘Effect of chemically modified date palm leaf fiber on mechanical, thermal and rheological properties of polyvinylpyrrolidone’, Fibers Polym., 2014, 15, (5), pp. 10621070.
    22. 22)
      • 44. Ansari, M.T., Sunderland, V.B.: ‘Solid dispersions of dihydroartemisinin in polyvinylpyrrolidone’, Arch. Pharm. Res., 2008, 31, (3), pp. 390398.
    23. 23)
      • 45. Smitha, S.L., Nissamudeen, K.M., Philip, D., et al: ‘Studies on surface plasmon resonance and photoluminescence of silver nanoparticles’, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 2008, 71, (1), pp. 186190.
    24. 24)
      • 3. Kennedy, P., Brammah, S., Wills, E.: ‘Burns, biofilm and a new appraisal of burn wound sepsis’, Burns, 2010, 36, (1), pp. 4956.
    25. 25)
      • 32. Moharram, M.A.K., Tohami, K., El Hotaby, W.M., et al: ‘Graphene oxide porous crosslinked cellulose nanocomposite microspheres for lead removal: kinetic study’, React. Funct. Polym., 2016, 101, pp. 919.
    26. 26)
      • 1. Lan, Y., Li, W., Jiao, Y., et al: ‘Therapeutic efficacy of antibiotic-loaded gelatin microsphere/silk fibroin scaffolds in infected full-thickness burns’, Acta Biomater., 2014, 10, (7), pp. 31673176.
    27. 27)
      • 10. Chen, G., Zhai, S., Zhai, Y., et al: ‘Preparation of sulfonic-functionalized graphene oxide as ion-exchange material and its application into electrochemiluminescence analysis’, Biosens. Bioelectron., 2011, 26, (7), pp. 31363141.
    28. 28)
      • 26. Tang, J., Chen, Q., Xu, L., et al: ‘Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms’, ACS Appl. Mater. Interfaces, 2013, 5, pp. 38673874.
    29. 29)
      • 6. Miao, W., Shim, G., Lee, S.S., et al: ‘Safety and tumor tissue accumulation of pegylated graphene oxide nanosheets for co-delivery of anticancer drug and photosensitizer’, Biomaterials, 2013, 34, (13), pp. 34023410.
    30. 30)
      • 12. De Faria, A.F., Martinez, D.S.T., Meira, S.M.M., et al: ‘Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets’, Colloids Surfaces B Biointerfaces, 2014, 113, pp. 115124.
    31. 31)
      • 36. Li, X.G., Kresse, I., Springer, J., et al: ‘Morphology and gas permselectivity of blend membranes of polyvinylpyridine with ethylcellulose’, Polymer (Guildf)., 2001, 42, (16), pp. 68596869.
    32. 32)
      • 16. Gurunathan, S., Han, J.W., Dayem, A.A., et al: ‘Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa’, Int. J. Nanomed., 2012, 7, pp. 59015914.
    33. 33)
      • 11. Bao, Q., Zhang, D., Qi, P.: ‘Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection’, J. Colloid Interface Sci., 2011, 360, (2), pp. 463470.
    34. 34)
      • 31. Wang, L., Yang, R., Wang, H., et al: ‘High-selective and sensitive voltammetric sensor for butylated hydroxyanisole based on AuNPs-PVP-graphene nanocomposites’, Talanta, 2015, 138, pp. 169175.
    35. 35)
      • 35. Yao, Y., Miao, S., Liu, S., et al: ‘Synthesis, characterization, and adsorption properties of magnetic [email protected] graphene nanocomposite’, Chem. Eng. J., 2012, 184, pp. 326332.
    36. 36)
      • 23. Yun, H., Ahmed, M.S., Lee, K., et al: ‘Potential enhancement of antibacterial activity of graphene oxide-silver nanocomposite by introducing C2 carbon chain linkage’, Appl. Surf. Sci., 2016, 360, pp. 915920.
    37. 37)
      • 34. Zhang, Y., Chi, H., Zhang, W., et al: ‘Highly efficient adsorption of copper ions by a PVP-reduced graphene oxide based On a New adsorptions mechanism’, NANO-MICRO Lett., 2014, 6, (1), pp. 8087.
    38. 38)
      • 39. Sun, Y., Wang, X., Lu, Y., et al: ‘Preparation and visible-light photochromism of phosphomolybdic acid/polyvinylpyrrolidone hybrid film’, Chem. Res. Chinese Univ., 2014, 30, (5), pp. 703708.
    39. 39)
      • 2. Hajská, M., Slobodníková, L., Hupková, H., et al: ‘In vitro efficacy of various topical antimicrobial agents in different time periods from contamination to application against 6 multidrug-resistant bacterial strains isolated from burn patients’, Burns, 2014, 40, (4), pp. 713718.
    40. 40)
      • 46. Martínez-Orozco, R.D., Rosu, H.C., Lee, S.W., et al: ‘Understanding the adsorptive and photoactivity properties of Ag-graphene oxide nanocomposites’, J. Hazard. Mater., 2013, 263P, pp. 5260.
    41. 41)
      • 24. Zhang, H.Z., Zhang, C., Zeng, G.M., et al: ‘Easily separated silver nanoparticle-decorated magnetic graphene oxide: synthesis and high antibacterial activity’, J. Colloid Interface Sci., 2016, 471, pp. 94102.
    42. 42)
      • 5. Singh, V., Joung, D., Zhai, L., et al: ‘Graphene based materials: past, present and future’, Prog. Mater. Sci., 2011, 56, (8), pp. 11781271.
    43. 43)
      • 38. Lan, N.T., Chi, D.T., Dinh, N.X., et al: ‘Photochemical decoration of silver nanoparticles on graphene oxide nanosheets and their optical characterization’, J. Alloys Compd., 2014, 615, pp. 843848.
    44. 44)
      • 28. Lukowiak, A., Kedziora, A., Strek, W.: ‘Antimicrobial graphene family materials: progress, advances, hopes and fears’, Adv. Colloid Interface Sci., 2016, 236, pp. 101112.
    45. 45)
      • 4. An, J., Gou, Y., Yang, C., et al: ‘Synthesis of a biocompatible gelatin functionalized graphene nanosheets and its application for drug delivery’, Mater. Sci. Eng. C, 2013, 33, (5), pp. 28272837.
    46. 46)
      • 7. Allen, M.J., Tung, V.C., Kaner, R.B.: ‘Honeycomb carbon: a review of graphene’, Chem. Rev., 2010, 110, pp. 132145.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5321
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5321
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address