access icon free Novel nanoplex-mediated plant transformation approach

Here, a rapid and easy transformation by electroporation technique for gene transfer in plants using cell penetrating amino nanocomplex (nanoplex) has been demonstrated in Nicotiana. Nanoplex was prepared using cell penetrating amino acids (CPAs) such as poly-L-lysine (PLL) and Argenine (Arg), in combination with the gold nanoparticles (AuNPs). PLLs-modified nanoplex with zeta potential of 34.2 ± 1.22 mV charge showed 63.3% efficiency for gene transformation in plant cells as compared to 60% when modified with Arg and the zeta potential was found to be 30.0 ± 0.83 mV; whereas, the transformation efficiency without nanoplex was found to be 6.6%. The findings indicate that the zeta potential of positively charged nanocomplex (AuNPs/CPAs/DNA/CPAs) increases the transformation efficiency because of their ability to protect the DNA from electroporation wave and endogenous enzyme damage. Transformation was confirmed by GUS assay and amplification of npt gene. This technique may open up new possibilities of gene transfer in plants, which will enable to produce large number of transgenic plants.

Inspec keywords: molecular biophysics; genomics; cellular biophysics; enzymes; DNA; biomedical materials; nanomedicine; genetics; gold; nanoparticles; biochemistry; electrokinetic effects

Other keywords: zeta potential; gene transfer; plant cells; AuNPs-CPAs-DNA-CPAs; electroporation wave; cell penetrating amino nanocomplex; voltage 29.169999999999998 mV to 30.830000000000002 mV; Au; transgenic plants; npt gene; gene transformation; nanoplex-mediated plant transformation approach; poly-L-lysine; cell penetrating amino acids; Arg; electroporation technique; transformation efficiency; gold nanoparticles; PLLs-modified nanoplex; positively charged nanocomplex; voltage 32.980000000000004 mV to 35.42 mV

Subjects: Physical chemistry of biomolecular solutions and condensed states; Nanotechnology applications in biomedicine; Genomic techniques; Biomolecular structure, configuration, conformation, and active sites; Biomedical materials; Macromolecular configuration (bonds, dimensions); Physics of subcellular structures; Electrochemistry and electrophoresis; Interactions with radiations at the biomolecular level

References

    1. 1)
      • 8. Sah, S., Kaur, A., Kaur, G., et al: ‘Genetic transformation of rice: problems, progress and prospect’, J. Rice Res., 2014, 3, pp. 23754338.
    2. 2)
      • 50. Shivshankar, S., Ahmad, A., Sastry, M.: ‘Geranium leaf assisted biosynthesis of silver nanoparticles’, Biotechnol. Prog.,2003, 19, pp. 16271631.
    3. 3)
      • 15. Wada, N., Kajiyama, S., Akiyama, Y., et al: ‘Bioactive beadsmediated transformation of rice with large DNA fragments containing Aegilopstauschiigenes’, Plant Cell Rep., 2009, 28, pp. 759768.
    4. 4)
      • 51. Gajbhiye, M., Kesharwani, J., Ingle, A., et al: ‘Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole’, Nanomed.: Nanotech. BioMed.,2009, 5, pp. 382386.
    5. 5)
      • 55. Hunter, R.J.: ‘Zeta potential in colloid science’ (Academic Press, London, 1981).
    6. 6)
      • 11. Wada, N., Kajiyama, S., Khemkladngoen, N., et al: ‘A novel gene delivery system in plants with calcium alginate micro-beads, in plant transformation technologies’ (Wiley-Blackwell, New Jersey, United States, 2011), pp. 7382.
    7. 7)
      • 56. Costa, A.L., Galassi, C., Greenwood, R.: ‘Alpha-alumina-H2O interface analysis by electroacoustic measurements’, J. Colloid Interface Sci., 2013, 13, (57), pp. 19.
    8. 8)
      • 69. Rao, S.C., Northup, B.K.: ‘Capabilities of four novel warm-season legumes in the southern great plains: grain production and quality’, Crop Sci., 2009, 49, (3), pp. 11031108.
    9. 9)
      • 37. Vijayakumar, P.S., Abhilash, O.U., Khan, B.M., et al: ‘Nanogold loaded sharp edged carbon bullets as plant gene carriers’, Adv. Func. Mater.,2010, 20, (15), pp. 24162423.
    10. 10)
      • 33. Zhigang, G.Z., Xiong, Fu-L.: ‘Preparation and characterization of starch nanoparticles in ionicliquid-in-oil microemulsions system’, Indus Crop Prod., 2014, 52, pp. 105110.
    11. 11)
      • 35. Song, Y., Xu, X., MacRenaris, K.W., et al: ‘Multimodal gadolinium-enriched DNA-gold nanoparticle conjugates for cellular imaging’, Angew. Chem., 2009, 121, pp. 93079311.
    12. 12)
      • 23. Zhang, P., Ma, Y., Zhang, Z., et al: ‘Biotransformation of ceria nanoparticles in cucumber plants’, ACS Nano., 2012, 6, (11), pp. 99439950.
    13. 13)
      • 65. Olton, D., Li, J., Wilson, M.E., et al: ‘Nanostructured calcium phosphate (NnoCaPs) for noviral gene delivery: influence of the synthesis parameters on transfection efficiency’, Biomaterials, 2007, 28, (6), pp. 12671279.
    14. 14)
      • 68. Xin, Z., Anna, K., Carlos, M.P.: ‘Magnetic gold nanoparticles as a vehicle for fluorescein isothiocyanate and DNA delivery into plant cells’, Botany, 2013, 91, (7), pp. 457466.
    15. 15)
      • 19. Servin, A.D., Morales, M.I., Castillo-Michel, H., et al: ‘Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain’, Environ. Sci. Technol., 2013, 47, pp. 1159211598.
    16. 16)
      • 52. Gade, A., Gaikwad, S., Duran, N., et al: ‘Screening of different species of Phoma for the synthesis of silver nanoparticles’, Biotechnol. Appl. Biochem., 2013, 60, (5), pp. 482493.
    17. 17)
      • 49. Huang, J., Li, Q., Sun, D., et al: ‘Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomumcamphora leaf’, Nanotechnol.,2007, 18, pp. 105104105115.
    18. 18)
      • 26. Germershaus, O., Nultsch, K.: ‘Localized, non-viral delivery of nucleic acids: opportunities, challenges and current strategies’, Asian J. Pharm. Sci., 2015, 10, pp. 159175.
    19. 19)
      • 64. Roy, I., Mitra, S., Maitra, A.N., et al: ‘Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery’, Int. J. Pharm., 2003, 250, (1), pp. 2533.
    20. 20)
      • 3. Ratanasut, K., Rod-In, W., Sujipuli, K.: ‘In planta Agrobacterium-mediated transformation of rice’, Rice Sci., 2017, 24, (3), pp. 181186.
    21. 21)
      • 58. Liu, B.R., Huang, Y.W., Lee, H.J.: ‘Mechanistic studies of intracellular delivery of proteins by cell-penetrating peptides in cyanobacteria’, BMC Microbiol., 2013, 13, (57), pp. 19.
    22. 22)
      • 54. Bansod, S.D., Bonde, S., Tiwari, V., et al: ‘Bioconjugation of gold and silver nanoparticles synthesized by Fusariumoxysporum and their use in rapid identification of Candida species by using: Bioconjugate-Nano-PCR’, J. Biomed. Nanotech., 2013, 9, (20), pp. 110.
    23. 23)
      • 6. Koetle, M.J., Finnie, J.F., Balázs, E., et al: ‘A review on factors affecting the Agrobacterium-mediated genetic transformation in ornamental monocotyledonous geophytes’, South African J. Bot., 2015, 98, (2015), pp. 3744.
    24. 24)
      • 10. Sone, T., Nagamori, E., Ikeuchi, T., et al: ‘A novel gene delivery system in plants with calcium alginate micro-beads’, J. Biosci. Bioeng.,2002, 94, pp. 8791.
    25. 25)
      • 41. He, G., Meng, R., Newman, M., et al: ‘Microsatellites as DNA markers in cultivated peanut (ArachishypogaeaL.)’, BMC Plant Biol., 2003, 3, pp. 16.
    26. 26)
      • 25. Ardekani, M., Abdin, M.Z., Nasrullah, N., et al: ‘Calcium phosphate nanoparticles a novel non-viral gene delivery system for genetic transformation of tobacco’, Int. J. Pharm. Pharm. Sci., 2014, 6, pp. 605609.
    27. 27)
      • 67. Xie, Y., Chen, Y., Sun, M., et al: ‘A mini review of biodegradable calcium phosphate nanoparticles for gene delivery’, Curr. Pharm. Biotechnol., 2014, 14, (10), pp. 918925.
    28. 28)
      • 24. Zhao, L., Sun, Y., Hernandez-Viezcas, J.A., et al: ‘Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study’, J. Agric. Food Chem., 2013, 61, pp. 1194511951.
    29. 29)
      • 57. Hanaor, D., Michelazzi, M., Leonelli, C., et al: ‘The effects of carboxylic acids on theaqueous dispersion and electrophoretic deposition of ZrO2’, J. Eur. Ceram. Soc., 2012, 32, pp. 235244.
    30. 30)
      • 17. Musante, C., White, J.C.: ‘Toxicity of silver and copper to Cucurbitapepo: differential effects of nano and bulk-size particles’, Environ. Toxicol.,2012, 7, pp. 510517.
    31. 31)
      • 12. Wada, N., Cartagena, J.A., Khemkladngoen, N., et al: ‘Bioactive beads mediated transformation of plants with large DNA fragments’, ‘Methods Mol. Biol.’, 2012, 847, pp. 91106, doi: 10.1007/978-1-61779-558-9_9.
    32. 32)
      • 5. Jinkerson, R.E., Martin, C.J.: ‘Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome’, The Plant J., 2015, 82, pp. 393412.
    33. 33)
      • 60. Boussif, O., Lezoualc'h, F., Zanta, M.A., et al: ‘A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine’, Proc. Natl. Acad. Sci. USA, 1995, 92, pp. 72977301.
    34. 34)
      • 63. Neumann, S., Kovtun, A., Dietzel, I.D., et al: ‘The use of size-defined DNA-functionalized calcium phosphate nanoparticles to minimise intracellular calcium disturbance during transfection’, Biomaterials, 2009, 30, (35), pp. 67946802.
    35. 35)
      • 47. Bawaskar, M., Gaikwad, S., Ingle, A., et al: ‘New report on mycosynthesis of silver nanoparticles by Fusariumculmorum’, Curr. Nanosci.,2010, 6, pp. 376380.
    36. 36)
      • 29. Zhang, X., Anna, K., Carlos, M.P., et al: ‘siRNA-loaded multi-shell nanoparticles incorporated into a multilayered film as a reservoir for gene silencing’, Biomater.,2010, 31, pp. 60136018.
    37. 37)
      • 2. Li, S., Zhen, C., Xu, W., et al: ‘Simple, rapid and efficient transformation of genotype nisqually-1: a basic tool for the first sequenced model tree’, Sci. Rep., 2017, 7, p. 2638. Doi: 10.1038/s41598-017-02651-x.
    38. 38)
      • 40. Liang, Z., Zhang, J., Wang, L., et al: ‘A centrifugation based method for preparation of gold nanoparticles and its application in biodetection’. Int. J. Mol. Sci., 2007, 8, pp. 526532.
    39. 39)
      • 9. Rai, M., Bansod, S., Bawaskar, M., et al: ‘Nanoparticles-based delivery systems in plant genetic transformation’ (Springer International Publishing, Switzerland, 2015), Doi: 10.1007/978-3-319-14024-710.
    40. 40)
      • 14. Liu, H., Kawabe, A., Matsunaga, S., et al: ‘An Arabidopsis thaliana gene on the yeast artificial chromosome can be transcribed in tobacco cells’, Cytologia, 2004, 69, pp. 235240.
    41. 41)
      • 62. Kircheis, R., Wightman, L., Wagner, E.: ‘Design and gene delivery activity of modified polyethylenimines’, Adv. Drug Deliv. Rev., 2001, 53, pp. 341358.
    42. 42)
      • 53. Singh, R., Wagh, P., Wadhwani, S., et al: ‘Synthesis, optimization, and characterization of silver nanoparticles from Acinetobactercalcoaceticus and their enhanced antibacterial activity when combined with antibiotics’, Int. J. Nanomed., 2013, 8, (1), pp. 42774290.
    43. 43)
      • 45. Ramteke, C., Chakrabarti, T., Sarangi, B.K., et al: ‘Synthesis of silver nanoparticles from the aqueous extract of leaves of Ocimum sanctum for enhanced antibacterial activity’, J. Chem., 2013, 2013, pp. 17, Doi: 10.1155/2013/278925.
    44. 44)
      • 48. Sanghi, A., Garg, N., Sharma, J., et al: ‘Optimisation of xylanaseproduction using in-expensive agro-residues by alkalophilicBacillus subtilis ASH in solid state fermentation’, World J. Micro. Biotechnol.,2008, 37, pp. 7183.
    45. 45)
      • 30. Wiesman, Z., Doma, N.B., Sharvit, E., et al: ‘Novel cationic vesicle platform derived from vernonia oil for efficient delivery of DNA through plant cuticle membranes’, J. Biotechnol., 2007, 130, pp. 8594.
    46. 46)
      • 22. Torre-Roche, R.D., Hawthorne, J, Mustante, C, et al: ‘Impact of Ag nanoparticle exposure on p,p-DDE bioaccumulation by Cucurbitapepo (Zucchini) and Glycine max (Soybean)’, Environ. Sci. Technol., 2013, 47, pp. 718725.
    47. 47)
      • 36. Fu, Y.-Q., Li, L.-H., Wang, P.-W., et al: ‘Delivering DNA into plant cell by gene carriers of ZnS nanoparticles’, Chem. Res. Chinese Univ., 2012, 28, (4), pp. 672676.
    48. 48)
      • 31. Nair, R., Varghese, S.H., Nair, B.G., et al: ‘Nanoparticulate material delivery to plants’, Plant Sci., 2010, 179, p. 154.
    49. 49)
      • 21. Torre-Roche, R.D., Hawthorne, J., Deng, Y., et al: ‘Multi walled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants’, Environ. Sci. Technol., 2013, 47, pp. 1253912547.
    50. 50)
      • 42. Jefferson, R.A., Kavanagh, T.A., Bevan, M.W.: ‘GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants’, EMBO J., 1987, 6, pp. 39013907.
    51. 51)
      • 27. Chowdhury, E., Akaike, T.: ‘High performance DNA nano-carriers of carbonate apatite: multiple factors in regulation of particle synthesis and transfection efficiency’, Int. J.Nanomed., 2007, 2, pp. 101106.
    52. 52)
      • 18. Servin, A.D., Castillo-Michel, H., Hernandez-Viezcas, J.A., et al: ‘Synchrotron micro-XRF and macro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumissativus) plants’, Environ. Sci. Technol., 2012, 46, pp. 76377643.
    53. 53)
      • 46. Sosa, I.O., Noguez, C., Barrera, R.G.: ‘Optical properties of metal nanoparticles with arbitrary shapes’, J. Phys. Chem. B., 2003, 107, pp. 62696275.
    54. 54)
      • 39. Ingle, A., Gade, A., Pierrat, S., et al: ‘Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria’, Curr. Nanosci.,2008, 4, pp. 141144.
    55. 55)
      • 28. Nguyen, D.N., Raghavan, S.S., Tashima, L.M., et al: ‘Enhancement of poly (orthoester) microspheres for DNA vaccine delivery by blending with poly (ethylenimine)’, Biomater.,2008, 29, pp. 27832793.
    56. 56)
      • 66. Hao, Y., Yang, X., Song, S., et al: ‘Exploring the cell uptake mechanism of phospholipid and polyethylene glycol coated gold nanoparticles’, J. Nanotechnol., 2012, 23, p.045103.
    57. 57)
      • 61. Yamazaki, Y., Nango, M., Matsuura, M., et al: ‘Polycation liposomes, a novel nonviral gene transfer system, constructed from cetylatedpolyethylenimine’, Gene Ther., 2000, 7, pp. 148155.
    58. 58)
      • 59. Liu, B.R., Huang, Y.W., Chiang, H.J., et al: ‘Primary effectors in the mechanisms of transmembrane delivery of arginine-rich cell-penetrating peptides’, Adv. Stud. Biol., 2013, 5, pp. 1125.
    59. 59)
      • 38. Cunningham, F.J., Goh, N.S., Demirer, G.S., et al: ‘Nanoparticle-mediated delivery towards advancing plant genetic engineering’, Trends Biotechnol., 2018, 36, (9), pp. 882897, Doi: 10.1016/j.tibtech.2018.03.009, Article in press.
    60. 60)
      • 1. Chen, K., Otten, L.: ‘Natural Agrobacteriumtransformants: recent results and some theoretical considerations’, Front. Plant Sci., 2017, 8, p. 1600. Doi: 10.3389/fpls.2017.01600.
    61. 61)
      • 16. Rai, M., Deshmukh, S., Gade, A., et al: ‘Strategic nanoparticle-mediated gene transfer in plants and animals-a novel approach’, Curr. Nanosci.,2012, 8, pp. 170179.
    62. 62)
      • 7. Nonaka, S., Someya, T., Zhou, S., et al: ‘An Agrobacterium tumefaciens strain with Gamma-Aminobutyricacid transaminase activity shows an enhanced genetic transformation ability in plants’, Sci. Rep., 2017, 7, p. 42649. Doi: 10.1038/srep42649.
    63. 63)
      • 32. Susana, M.O., Justin, S.V., Victor, S.Y., et al: ‘Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method’, Adv. Funct. Mater.,2012, 22, pp. 35763582.
    64. 64)
      • 43. Bawskar, M., Deshmukh, S., Bansod, S., et al: ‘Comparative analysis of biosynthesized and chemosynthesized silver nanoparticles with special reference to their antibacterial activity against pathogens’, IET Nanobiotechnol., 2015, 9, (3), pp. 107113. Doi: 10.1049/iet-nbt.2014.0032.
    65. 65)
      • 20. Schwabe, F., Schulin, R., Limbach, L.K., et al: ‘Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture’, Chemosphere, 2013, 91, (4), pp. 512520.
    66. 66)
      • 4. Klein, T., Fitzpatrick, M.S.: ‘Particle bombardment: a universal approach for gene transfer to cells and tissues’, Curr. Opin. Biotechnol.,1993, 4, pp. 583590.
    67. 67)
      • 13. Liu, H., Kawabe, A., Matsunaga, S., et al: ‘Obtaining transgenic plants using the bio-active beads method’, J. Plant Res., 2004, 117, pp. 9599.
    68. 68)
      • 34. Pasupathy, K., Lin, S.J., Hu, Q.: ‘Direct plant gene delivery with a poly (amidoamine) dendrimer’, Biotechnol J., 2008, 3, pp. 10781082.
    69. 69)
      • 44. Birla, S.S., Gaikwad, S.C., Gade, A.K., et al: ‘Rapid synthesis of silver nanoparticles from Fusariumoxysporum by optimizing physicoculturalconditions’, Sci. World J., 2013, 2013, pp. 112, 796018. Doi: 10.1155/2013/796018.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5283
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5283
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading