Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Formulation and characterisation of a self-nanoemulsifying drug delivery system of amphotericin B for the treatment of leishmaniasis

This study was aimed to develop a self-nanoemulsifying drug delivery system (SNEDDS) for amphotericin B (AmB) potential use in leishmaniasis through topical and oral routes. Two formulations, formulation A and formulation B (FA and FB) of AmB loaded SNEDDS were developed by mixing their excipients through vortex and sonication. The SNEDDS formulation FA and FB displayed a mean droplet size of 27.70 ± 0.5 and 30.17 ± 0.7nm and zeta potential −11.4 ± 3.25 and −13.6 ± 2.75mV, respectively. The mucus permeation study showed that formulation FA and FB diffused 1.45 and 1.37%, respectively in up to 8mm of mucus. The cell permeation across Caco-2 cells monolayer was 10 and 11%, respectively. Viability of Caco-2 cells was 89% for FA and 86.9% for FB. The anti-leishmanial activities of FA in terms of IC50 were 0.017µg/ml against promastigotes and 0.025µg/ml against amastigotes, while IC50 values of FB were 0.031 and 0.056µg/ml, respectively. FA and FB killed macrophage harboured Leishmania parasites in a dose-dependent manner and a concentration of 0.1µg/ml killed 100% of the parasites. These formulations have the potential to provide a promising tool for AmB use through oral and topical routes in leishmaniasis therapy.

References

    1. 1)
      • 24. O'Brien, J., Wilson, I., Orton, T., et al: ‘Investigation of the alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity’, Eur. J. Biochem., 2000, 267, (17), pp. 54215426.
    2. 2)
      • 7. Sundar, S., More, D.K., Singh, M.K., et al: ‘Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic’, Clin. Infect. Dis., 2000, 31, (4), pp. 11041107.
    3. 3)
      • 25. Bernkop-Schnurch, A., Jalil, A.: ‘Do drug release studies from SEDDS make any sense?’, J. Control Release, 2018, 271, pp. 5559.
    4. 4)
      • 18. Ahmad, J., Kohli, K., Mir, S.R., et al: ‘Self-emulsifying nano carriers for improved oral bioavailability of lipophilic drugs’, Rev. Adv. Sci. Eng., 2012, 1, (2), pp. 134147.
    5. 5)
      • 11. Ponte-Sucre, A., Gamarro, F., Dujardin, J.C., et al: ‘Drug resistance and treatment failure in leishmaniasis: a 21st century challenge’, PLoS Negl. Trop. Dis., 2017, 11, (12), p. e0006052.
    6. 6)
      • 8. Sundar, S., Mehta, H., Suresh, A.V., et al: ‘Amphotericin B treatment for Indian visceral leishmaniasis: conventional versus lipid formulations’, Clin. Infect. Dis., 2004, 38, (3), pp. 377383.
    7. 7)
      • 28. Nadhman, A., Nazir, S., Khan, M.I., et al: ‘PEGylated silver doped zinc oxide nanoparticles as novel photosensitizers for photodynamic therapy against leishmania’, Free Radical Biol. Med., 2014, 77, pp. 230238.
    8. 8)
      • 27. Dutta, A., Bandyopadhyay, S., Mandal, C., et al: ‘Development of a modified MTT assay for screening antimonial resistant field isolates of Indian visceral leishmaniasis’, Parasitol. Int., 2005, 54, (2), pp. 119122.
    9. 9)
      • 4. Santos, D.O., Coutinho, C.E., Madeira, M.F., et al: ‘Leishmaniasis treatment—a challenge that remains: a review’, Parasitol. Res., 2008, 103, (1), pp. 110.
    10. 10)
      • 12. https://www.dndi.org/diseases-projects/leishmaniasis/, accessed May 31 2018 2018.
    11. 11)
      • 20. Jennings, P., Koppelstaetter, C., Aydin, S., et al: ‘Cyclosporine A induces senescence in renal tubular epithelial cells’, Am. J. Physiol. Renal. Physiol., 2007, 293, (3), pp. F831F838.
    12. 12)
      • 32. Zhang, H., Yao, M., Morrison, R.A., et al: ‘Commonly used surfactant, tween 80, improves absorption of P-glycoprotein substrate, digoxin, in rats’, Arch. Pharmacal Res., 2003, 26, (9), pp. 768772.
    13. 13)
      • 36. Efiana, N.A., Phan, T.N.Q., Wicaksono, A.J., et al: ‘Mucus permeating self-emulsifying drug delivery systems (SEDDS): about the impact of mucolytic enzymes’, Colloids Surf. B, Biointerfaces, 2018, 1, (161), pp. 228235.
    14. 14)
      • 30. Kauffman, A.L., Gyurdieva, A.V., Mabus, J.R., et al: ‘Alternative functional in vitro models of human intestinal epithelia’, Front. Pharmacol., 2013, 4, p. 79.
    15. 15)
      • 33. van Zuylen, L., Karlsson, M.O., Verweij, J., et al: ‘Pharmacokinetic modeling of paclitaxel encapsulation in cremophor EL micelles’, Cancer Chemother. Pharmacol., 2001, 47, (4), pp. 309318.
    16. 16)
      • 22. Dunnhaupt, S., Barthelmes, J., Hombach, J., et al: ‘Distribution of thiolated mucoadhesive nanoparticles on intestinal mucosa’, Int. J. Pharm., 2011, 408, (1–2), pp. 191199.
    17. 17)
      • 15. Wasan, E.K., Bartlett, K., Gershkovich, P., et al: ‘Development and characterization of oral lipid-based amphotericin B formulations with enhanced drug solubility, stability and antifungal activity in rats infected with Aspergillus fumigatus or Candida albicans’, Int. J. Pharm., 2009, 372, (1–2), pp. 7684.
    18. 18)
      • 31. Elbahwy, I.A., Lupo, N., Ibrahim, H.M., et al: ‘Mucoadhesive self-emulsifying delivery systems for ocular administration of econazole’, Int. J. Pharm., 2018, 25, pp. 7280.
    19. 19)
      • 3. Chakravarty, J., Sundar, S.: ‘Drug resistance in leishmaniasis’, J. Glob. Infect. Dis., 2010, 2, (2), pp. 167176.
    20. 20)
      • 9. Thakur, C.P., Pandey, A.K., Sinha, G.P., et al: ‘Comparison of three treatment regimens with liposomal amphotericin B (AmBisome) for visceral leishmaniasis in India: a randomized dose-finding study’, Trans. R. Soc. Trop. Med. Hyg., 1996, 90, (3), pp. 319322.
    21. 21)
      • 16. Zupancic, O., Partenhauser, A., Lam, H.T., et al: ‘Development and in vitro characterisation of an oral self-emulsifying delivery system for daptomycin’, Eur. J. Pharm. Sci., 2016, 81, pp. 129136.
    22. 22)
      • 2. Yasinzai, M., Khan, M., Nadhman, A., et al: ‘Drug resistance in leishmaniasis: current drug-delivery systems and future perspectives’, Future Med. Chem., 2013, 5, (15), pp. 18771888.
    23. 23)
      • 34. Saha, P., Kou, J.H.: ‘Effect of solubilizing excipients on permeation of poorly water-soluble compounds across Caco-2 cell monolayers’, Eur. J. Pharm. Biopharm., 2000, 50, (3), pp. 403411.
    24. 24)
      • 14. Javed, I., Hussain, S.Z., Ullah, I., et al: ‘Synthesis, characterization and evaluation of lecithin-based nanocarriers for the enhanced pharmacological and oral pharmacokinetic profile of amphotericin B’, J. Mater. Chem. B, 2015, 3, (42), pp. 83598365.
    25. 25)
      • 17. Fricker, G., Kromp, T., Wendel, A., et al: ‘Phospholipids and lipid-based formulations in oral drug delivery’, Pharm. Res., 2010, 27, (8), pp. 14691486.
    26. 26)
      • 29. Nadhman, A., Nazir, S., Khan, M.I., et al: ‘Visible-light-responsive ZnCuO nanoparticles: benign photodynamic killers of infectious protozoans’, Int. J. Nanomed., 2015, 10, pp. 68916903.
    27. 27)
      • 10. Wortmann, G., Zapor, M., Ressner, R., et al: ‘Lipsosomal amphotericin B for treatment of cutaneous leishmaniasis’, Am. J. Trop. Med. Hyg., 2010, 83, (5), pp. 10281033.
    28. 28)
      • 35. Griesser, J., Hetényi, G., Kadas, H., et al: ‘Self-emulsifying peptide drug delivery systems: How to make them highly mucus permeating’, Int. J. Pharm., 2018, 1, pp. 159166.
    29. 29)
      • 6. Goyeneche-Patino, D.A., Valderrama, L., Walker, J., et al: ‘Antimony resistance and trypanothione in experimentally selected and clinical strains of leishmania panamensis’, Antimicrob. Agents Chemother., 2008, 52, (12), pp. 45034506.
    30. 30)
      • 26. Walker, M., Hulme, T.A., Rippon, M.G., et al: ‘In vitro model(s) for the percutaneous delivery of active tissue repair agents’, J. Pharm. Sci., 1997, 86, (12), pp. 13791384.
    31. 31)
      • 23. Pereira de Sousa, I., Cattoz, B., Wilcox, M.D., et al: ‘Nanoparticles decorated with proteolytic enzymes, a promising strategy to overcome the mucus barrier’, Eur. J. Pharm. Biopharm., 2015, 97, (Pt A), pp. 257264.
    32. 32)
      • 19. Nigade, P.M., Patil, S.L., Tiwari, S.S.: ‘Self emulsifying drug delivery system (SEDDS): a review’, Int. J. Pharm. Biol. Sci., 2012, 2, (2), pp. 4252.
    33. 33)
      • 13. Pouton, C.W.: ‘Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system’, Eur. J. Pharm. Sci., 2006, 29, (3), pp. 278287.
    34. 34)
      • 5. van Griensven, J., Balasegaram, M., Meheus, F., et al: ‘Combination therapy for visceral leishmaniasis’, Lancet Infect. Dis., 2010, 10, (3), pp. 184194.
    35. 35)
      • 1. http://www.who.int/leishmaniasis/en/, accessed May 31 2018.
    36. 36)
      • 21. Kollner, S., Nardin, I., Markt, R., et al: ‘Self-emulsifying drug delivery systems: design of a novel vaginal delivery system for curcumin’, Eur. J. Pharm. Biopharm., 2017, 115, pp. 268275.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5281
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5281
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address