http://iet.metastore.ingenta.com
1887

Production of a new platform based on fumed and mesoporous silica nanoparticles for enhanced solubility and oral bioavailability of raloxifene HCl

Production of a new platform based on fumed and mesoporous silica nanoparticles for enhanced solubility and oral bioavailability of raloxifene HCl

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The purpose of the present study was to compare mesoporous and fumed silica nanoparticles (NPs) to enhance the aqueous solubility and oral bioavailability of raloxifene hydrochloride (RH). Mesoporous silica NPs (MSNs) and fumed silica NPs were used by freeze-drying or spray-drying methods. MSNs were obtained with different ratios of cetyltrimethylammonium bromide. Saturation solubility of the NPs was compared with the pure drug. The optimised formulation was characterised by scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetry. The pharmacokinetic studies were done by oral administration of a single dose of 15 mg/kg of pure drug or fumed silica NPs of RH in Wistar rats. MSNs enhanced the solubility of RH from 19.88 ± 0.12 to 76.5 μg/ml. Freeze-dried fumed silica increased the solubility of the drug more than MSNs (140.17 ± 0.45 μg/ml). However, the spray-dried fumed silica caused about 26-fold enhancement in its solubility (525.7 ± 93.5 μg/ml). Increasing the ratio of silica NPs enhanced the drug solubility. The results of XRD and SEM analyses displayed RH were in the amorphous state in the NPs. Oral bioavailability of NPs showed 3.5-fold increase compared to the pure drug. The RH loaded fumed silica NPs prepared by spray-drying technique could more enhance the solubility and oral bioavailability of RH.

References

    1. 1)
      • 1. Viereck, V., Grundker, C., Blaschke, S., et al: ‘Raloxifene concurrently stimulates osteoprotegerin and inhibits interleukin-6 production by human trabecular osteoblasts’, J. Clin. Endocrinol. Metab., 2003, 88, (9), pp. 42064213.
    2. 2)
      • 2. Elsheikh, M.A., Elnaggar, Y.S., Gohar, E.Y., et al: ‘Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: optimization and in vivo appraisal’, Int. J. Nanomed., 2012, 7, pp. 37873802.
    3. 3)
      • 3. Nosrati, H., Mojtahedi, A., Danafar, H., et al: ‘Enzymatic stimuli-responsive methotrexate-conjugated magnetic nanoparticles for target delivery to breast cancer cells and release study in lysosomal condition’, J. Biomed. Mater. Res. A, 2018, 106A, pp. 16461654.
    4. 4)
      • 4. Nosrati, H., Javani, E., Salehiabar, M., et al: ‘Biocompatibility and anticancer activity of L-phenyl alanine-coated iron oxide magnetic nanoparticles as potential chrysin delivery system’, J. Mater. Res., 2018, 33, (11), pp. 16021611.
    5. 5)
      • 5. Nosrati, H., Adibtabar, M., Sharafi, A., et al: ‘PAMAM-modified citric acid-coated magnetic nanoparticles as pH sensitive biocompatible carrier against human breast cancer cells’, Drug Dev. Ind. Pharm., 2018, 44, (8), pp. 13771384.
    6. 6)
      • 6. Salehiabar, M., Nosrati, H., Javani, E., et al: ‘Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery’, Int. J. Biol. Macromol., 2018, 115, pp. 8389.
    7. 7)
      • 7. Nosrati, H., Abbasi, R., Charmi, J., et al: ‘Folic acid conjugated bovine serum albumin: An efficient smart and tumor targeted biomacromolecule for inhibition folate receptor positive cancer cells’, Int. J. Biol. Macromol., 2018, 117, pp. 11251132.
    8. 8)
      • 8. Mellaerts, R., Houthoofd, K., Elen, K., et al: ‘Aging behavior of pharmaceutical formulations of itraconazole on SBA-15 ordered mesoporous silica carrier material’, Microporous Mesoporous Mater., 2010, 130, (1), pp. 154161.
    9. 9)
      • 9. Van Speybroeck, M., Barillaro, V., Thi, T.D., et al: ‘Ordered mesoporous silica material SBA-15: a broad-spectrum formulation platform for poorly soluble drugs’, J. Pharm. Sci., 2009, 98, (8), pp. 26482658.
    10. 10)
      • 10. Mellaerts, R., Aerts, C.A., Van Humbeeck, J., et al: ‘Enhanced release of itraconazole from ordered mesoporous SBA-15 silica materials’, Chem. Commun. (Camb), 2007, 13, pp. 13751377.
    11. 11)
      • 11. Mellaerts, R., Jammaer, J.A., Van Speybroeck, M., et al: ‘Physical state of poorly water soluble therapeutic molecules loaded into SBA-15 ordered mesoporous silica carriers: a case study with itraconazole and ibuprofen’, Langmuir, 2008, 24, (16), pp. 86518659.
    12. 12)
      • 12. Mellaerts, R., Mols, R., Jammaer, J.A., et al: ‘Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica’, Eur. J. Pharm. Biopharm., 2008, 69, (1), pp. 223230.
    13. 13)
      • 13. Wang, F., Barnes, T.J., Prestidge, C.A.: ‘Celecoxib confinement within mesoporous silicon for enhanced oral bioavailability’, Mesoporous Biomater., 2013, 1, (1), pp. 115.
    14. 14)
      • 14. Kiekens, F., Eelen, S., Verheyden, L., et al: ‘Use of ordered mesoporous silica to enhance the oral bioavailability of ezetimibe in dogs’, J. Pharm. Sci., 2012, 101, (3), pp. 11361144.
    15. 15)
      • 15. Maleki, A., Hamidi, M.: ‘Dissolution enhancement of a model poorly water-soluble drug, atorvastatin, with ordered mesoporous silica: comparison of MSF with SBA-15 as drug carriers’, Expert Opin. Drug Deliv., 2016, 13, (2), pp. 171181.
    16. 16)
      • 16. Hong, S., Shen, S., Tan, D.C., et al: ‘High drug load, stable, manufacturable and bioavailable fenofibrate formulations in mesoporous silica: a comparison of spray drying versus solvent impregnation methods’, Drug Deliv., 2016, 23, (1), pp. 316327.
    17. 17)
      • 17. Liu, X., Che, S.: ‘Enhanced release of the poorly soluble drug itraconazole loaded in ordered mesoporous silica’, Sci. China Chem., 2015, 58, (3), pp. 400410.
    18. 18)
      • 18. Hassan, A.F., Helmy, S.A., Donia, A.: ‘MCM-41 for meloxicam dissolution improvement: in vitro release and in vivo bioavailability studies’, J. Brazil. Chem. Soc., 2015, 26, (7), pp. 13671378.
    19. 19)
      • 19. Lodha, A., Lodha, M., Patel, A., et al: ‘Synthesis of mesoporous silica nanoparticles and drug loading of poorly water soluble drug cyclosporin A’, J. Pharm. Bioallied Sci., 2012, 4, (Suppl 1), p. S92.
    20. 20)
      • 20. Benezra, M., Penate-Medina, O., Zanzonico, P.B., et al: ‘Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma’, J. Clin. Investig., 2011, 121, pp. 27682780.
    21. 21)
      • 21. Ow, H., Larson, D.R., Srivastava, M., et al: ‘Bright and stable core shell fluorescent silica nanoparticles’, Nano Lett.., 2005, 5, pp. 113117.
    22. 22)
      • 22. Liu, T., Li, L., Teng, X., et al: ‘Single and repeated dose toxicity of mesoporous hollow silica nanoparticles in intravenously exposed mice’, Biomaterials., 2011, 32, pp. 16571668.
    23. 23)
      • 23. Fu, C., Liu, T., Li, L., et al: ‘The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes’, Biomaterials., 2013, 34, pp. 25652575.
    24. 24)
      • 24. He, Q., Shi, J., Zhu, M., et al: ‘The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid’, Microporous Mesoporous Mater.., 2010, 131, pp. 314320.
    25. 25)
      • 25. Huang, X., Li, L., Liu, T., et al: ‘The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo’, ACS Nano., 2011, 5, (7), pp. 53905399.
    26. 26)
      • 26. Patil, A., Chirmade, U.N., Slipper, I., et al: ‘Encapsulation of water insoluble drugs in mesoporous silica nanoparticles using supercritical carbon dioxide’, J. Nanomedic. Nanotechnol., 2011, 2, pp. 111121.
    27. 27)
      • 27. Apley, M., Crist, G.B., Fellner, V., et al: ‘Determination of thermodynamic solubility of active pharmaceutical ingredients for veterinary species: A new USP general chapter’, Dissol. Technol., 2017, 4, (1), pp. 3639.
    28. 28)
      • 28. He, Q., Shi, J.: ‘Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility’, J. Mater. Chem., 2011, 21, (16), pp. 58455855.
    29. 29)
      • 29. Qian, K.K., Bogner, R.H.: ‘Application of mesoporous silicon dioxide and silicate in oral amorphous drug delivery systems’, J. Pharm. Sci., 2012, 101, (2), pp. 444463.
    30. 30)
      • 30. Kinnari, P., Makila, E., Heikkila, T., et al: ‘Comparison of mesoporous silicon and non-ordered mesoporous silica materials as drug carriers for itraconazole’, Int. J. Pharm., 2011, 414, (1–2), pp. 148156.
    31. 31)
      • 31. Prestidge, C.A., Barnes, T.J., Lau, C.H., et al: ‘Mesoporous silicon: a platform for the delivery of therapeutics’, Expert Opin. Drug Deliv., 2007, 4, (2), pp. 101110.
    32. 32)
      • 32. Qian, F., Huang, J., Hussain, M.A.: ‘Drug-polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development’, J. Pharm. Sci., 2010, 99, (7), pp. 29412947.
    33. 33)
      • 33. Jackson, C.L., McKenna, G.B.: ‘Vitrification and crystallization of organic liquids confined to nanoscale pores’, Chem. Mater.., 1996, 8, (8), pp. 21282137.
    34. 34)
      • 34. Patil, P.H., Belgamwar, V.S., Patil, P.R., et al: ‘Solubility enhancement of raloxifene using inclusion complexes and cogrinding method’, J. Pharm., 2013, 2013, p. 527380.
    35. 35)
      • 35. He, Y., Liang, S., Long, M., et al: ‘Mesoporous silica nanoparticles as potential carriers for enhanced drug solubility of paclitaxel’, Mater. Sci. Eng. C Mater. Biol. Appl., 2017, 78, pp. 1217.
    36. 36)
      • 36. Nepal, P.R., Han, H.K., Choi, H.K.: ‘Enhancement of solubility and dissolution of coenzyme Q10 using solid dispersion formulation’, Int. J. Pharm., 2010, 383, (1–2), pp. 147153.
    37. 37)
      • 37. Varshosaz, J., Minayian, M., Ahmadi, M., et al: ‘Enhancement of solubility and antidiabetic effects of repaglinide using spray drying technique in STZ-induced diabetic rats’, Pharm. Dev. Technol., 2017, 22, (6), pp. 754763.
    38. 38)
      • 38. Ambrogi, V., Perioli, L., Marmottini, F., et al: ‘Role of mesoporous silicates on carbamazepine dissolution rate enhancement’, Microporous Mesoporous Mater., 2008, 113, (1), pp. 445452.
    39. 39)
      • 39. Wang, F., Hui, H., Barnes, T.J., et al: ‘Oxidized mesoporous silicon microparticles for improved oral delivery of poorly soluble drugs’, Mol. Pharm., 2009, 7, (1), pp. 227236.
    40. 40)
      • 40. Wang, Y., Zhao, Q., Han, N., et al: ‘Mesoporous silica nanoparticles in drug delivery and biomedical applications’, Nanomed. Nanotechnol. Biol. Med., 2015, 11, (2), pp. 313313.
    41. 41)
      • 41. Wang, Y., Sun, L., Jiang, T., et al: ‘The investigation of MCM-48-type and MCM-41-type mesoporoussilica as oral solid dispersion carriers for water insoluble cilostazol’, Drug Dev. Ind. Pharm., 2014, 40, (6), pp. 819828.
    42. 42)
      • 42. Noyes, A.A., Whitney, W.R.: ‘The rate of solution of solid substances in their own solutions’, J. Am. Chem. Soc., 1897, 19, (12), pp. 930934.
    43. 43)
      • 43. Leuner, C., Dressman, J.: ‘Improving drug solubility for oral delivery using solid dispersions’, Eur. J. Pharm. Biopharm., 2000, 50, (1), pp. 4760.
    44. 44)
      • 44. Huang, X., Teng, X., Chen, D., et al: ‘The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function’, Biomaterials, 2010, 31, (3), pp. 438448.
    45. 45)
      • 45. Shen, S.C., Ng, W.K., Chia, L., et al: ‘Physical state and dissolution of ibuprofen formulated by co-spray drying with mesoporous silica: effect of pore and particle size’, Int. J. Pharm., 2011, 410, (1–2), pp. 188195.
    46. 46)
      • 46. Kommavarapu, P., Maruthapillai, A., Palanisamy, K., et al: ‘Physical characterization and dissolution performance assessment of etravirine solid dispersions prepared by spray drying process’, Pakistan J. Pharm. Sci., 2016, 29, (6), pp. 20232031.
    47. 47)
      • 47. Tran, T.H., Poudel, B.K., Marasini, N., et al: ‘Preparation and evaluation of raloxifene-loaded solid dispersion nanoparticle by spray-drying technique without an organic solvent’, Int. J. Pharm., 2013, 443, (1), pp. 5057.
    48. 48)
      • 48. Hu, Y., Zhi, Z., Zhao, Q., et al: ‘3D cubic mesoporous silica microsphere as a carrier for poorly soluble drug carvedilol’, Microporous Mesoporous Mater., 2012, 147, (1), pp. 94101.
    49. 49)
      • 49. Safety data sheet of Aerosil 200, EVONIC Industries. Revision date 04/30/2015, 2018. Available at https://www.freemansupply.com/MSDS/Combined/Fillers/Aerosil200.pdf, accessed 21 February 2018.
    50. 50)
      • 50. Corrigan, D.O., Healy, A.M., Corrigan, O.I.: ‘The effect of spray drying solutions of polyethylene glycol (PEG) and lactose/PEG on their physicochemical properties’, Int. J. Pharm., 2002, 235, (1), pp. 193205.
    51. 51)
      • 51. Altamimi, M.A., Neau, S.H.: ‘Investigation of the in vitroperformance difference of drug-soluplus(R) and drug-PEG 6000 dispersions when prepared using spray drying or lyophilization’, Saudi Pharm. J., 2017, 25, (3), pp. 419439.
    52. 52)
      • 52. Li, X., Peng, H., Tian, B., et al: ‘Preparation and characterization of azithromycin-aerosil 200 solid dispersions with enhanced physical stability’, Int. J. Pharm., 2015, 486, (1–2), pp. 175184.
    53. 53)
      • 53. Yang, Z.Y., Zhang, Z.F., He, X.B., et al: ‘Validation of a novel HPLC method for the determination of raloxifene and its pharmacokinetics in rat plasma’, Chromatographia, 2007, 65, (3/4), pp. 197201.
    54. 54)
      • 54. Thakur, P.S., Singh, N., Sangamwar, A.T., et al: ‘Investigation of need of natural bioenhancer for a metabolism susceptible drug-raloxifene, in a designed self-emulsifying drug delivery system’, AAPS PharmSciTech., 2017, 18, (7), pp. 25292540.
    55. 55)
      • 55. Shah, N.V., Seth, A.K., Balaraman, R., et al: ‘Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: design and in vivo study’, J. Adv. Res., 2016, 7, (3), pp. 423434.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5252
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5252
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address