access icon free Efficacy of mycosynthesised AgNPs from Earliella scabrosa as an in vitro antibacterial and wound healing agent

The silver nanoparticles (AgNPs) with their unique chemical and physical properties are proving as a new therapeutical agent. In the present study, the AgNPs synthesised from an aqueous extract of a macrofungus, Earliella scabrosa, were characterised by field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDX), high-resolution transmission electron microscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and further evaluate for its in vitro antibacterial and wound healing efficacy. The mycosynthesised AgNPs exhibited the surface plasmon resonance peak at 410 nm with good stability over a period of a month. The FESEM and EDX analyses revealed the spherical-shaped AgNPs of an average size of 20 nm and the presence of elemental Ag, respectively. The XRD pattern showed the crystalline nature of AgNPs. The FTIR spectra confirmed the conversion of Ag+ ions to AgNPs due to reduction by biomolecules of macrofungus extract. The mycosynthesised AgNPs showed effective antibacterial activity against two Gram-positive bacteria, namely Bacillus subtilis and Staphylococcus aureus, and two Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa. The pathogens were highly sensitive to AgNPs, whereas less sensitive to AgNO3. The mycosynthesised AgNPs showed significant wound healing potential with 68.58% of wound closure.

Inspec keywords: wounds; field emission scanning electron microscopy; microorganisms; molecular biophysics; nanomedicine; reduction (chemical); biomedical materials; X-ray diffraction; nanoparticles; X-ray chemical analysis; transmission electron microscopy; surface plasmon resonance; antibacterial activity; silver; particle size; nanofabrication; Fourier transform infrared spectra

Other keywords: wound healing agent; spherical-shaped AgNPs; in vitro antibacterial efficacy; aqueous extract; EDX; Bacillus subtilis; FTIR spectroscopy; chemical properties; mycosynthesised AgNPs; FESEM; macrofungus; energy dispersive X-ray analysis; silver nanoparticles; crystalline nature; Escherichia coli; Ag; Gram-negative bacteria; Staphylococcus aureus; surface plasmon resonance peak; Pseudomonas aeruginosa; field emission scanning electron microscopy; physical properties; biomolecules; healing efficacy; XRD; pathogens; X-ray diffraction; Fourier transform infrared spectroscopy; Earliella scabrosa; therapeutical agent; Gram-positive bacteria; wound closure; high-resolution transmission electron microscopy

Subjects: Biomedical materials; Patient care and treatment; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Collective excitations (surface states); Other methods of nanofabrication; Nanotechnology applications in biomedicine; Low-dimensional structures: growth, structure and nonelectronic properties; Electromagnetic radiation spectrometry (chemical analysis); Infrared and Raman spectra in metals; Optical properties of metals and metallic alloys (thin films, low-dimensional and nanoscale structures)

References

    1. 1)
      • 34. Fronza, M., Heinzmann, B., Hamburger, M., et al: ‘Determination of the wound healing effect of Calendula extracts using the scratch assay with 3T3 fibroblasts’, J. Ethnopharmacol., 2009, 126, pp. 463467.
    2. 2)
      • 18. Chang, R.: ‘Functional properties of edible mushrooms’, Nutr. Rev., 1996, 54, pp. S91S93.
    3. 3)
      • 12. Ajith, T.A., Janardhanan, K.K.: ‘Indian medicinal mushrooms as a source of antioxidant and antitumor agents’, J. Clin. Biochem. Nutr., 2007, 40, p. 157.
    4. 4)
      • 6. Mohanpuria, P., Rana, N.K., Yadav, S.K.: ‘Biosynthesis of nanoparticles: technological concepts and future applications’, J. Nanopart. Res., 2007, 7, pp. 92759280.
    5. 5)
      • 13. Turkoglu, A., Duru, M.E., Mercan, N., et al: ‘Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.) Murrill’, Food Chem., 2007, 101, pp. 267273.
    6. 6)
      • 14. Al-Hamadani, A.H., Kareem, A.A.: ‘Combination effect of edible mushroom – sliver nanoparticles and antibiotics against selected multidrug biofilm pathogens’, Iraq Med. J., 2017, 1, (3), pp. 6874.
    7. 7)
      • 29. Bankura, K.P., Maity, D., Mollick, M.M.R., et al: ‘Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium’, Carbohydr. Polym., 2012, 89, pp. 11591165.
    8. 8)
      • 30. Morones, J.R., Elechiguerra, J.L., Camacho, A., et al: ‘The bactericidal effect of silver nanoparticles’, J. Nanotechnol., 2005, 16, pp. 23462353.
    9. 9)
      • 17. Owaid, M.N., Raman, J., Lakshmanan, H., et al: ‘Mycosynthesis of silver nanoparticles by Pleurotus cornucopiae var. Citrinopileatus and its inhibitory effects against Candida sp.’, Mater. Lett., 2015, 153, pp. 186190.
    10. 10)
      • 11. Mensah, A.Y., Sampson, J., Houghton, P.J., et al: ‘Effects of Buddleja globosa leaf and its constituents relevant to wound healing’, J. Ethnopharmacol., 2001, 77, pp. 219226.
    11. 11)
      • 2. Kohler, J.M., Hubner, U., Romanus, H., et al: ‘Formation of star-like and core–shell Au–Ag nanoparticles during two and three step preparation in batch and microfluidic systems’, J. Nanomater., 2007, 1155, pp. 9813498141.
    12. 12)
      • 16. Maurya, S., Bhardwaj, A.K., Gupta, K.K., et al: ‘Green synthesis of silver nanoparticles using Pleurotus and its bactericidal activity’, Cell. Mol. Biol., 2016, 62, p. 131.
    13. 13)
      • 28. Mie, G.: ‘A contribution to the optics of turbid media, especially colloidal metallic suspensions’, Ann. Phys., 1908, 25, pp. 377445.
    14. 14)
      • 22. Balashanmugam, P., Kalaichelvan, P.T.: ‘Biosynthesis characterization of silver nanoparticles using Cassia roxburghii DC. Aqueous extract, and coated on cotton cloth for effective antibacterial activity’, Int. J. Nanomed., 2015, 10, pp. 8797.
    15. 15)
      • 9. Duran, N., Marcato, P.D., Alves, O.L., et al: ‘Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains’, J. Nanobiotechnol., 2005, 3, pp. 814.
    16. 16)
      • 33. Ebeling, S., Naumann, K., Pollok, S., et al: ‘From a traditional medicinal plant to a rational drug: understanding the clinically proven wound healing efficacy of birch bark extract’, PLoS One, 2014, 9, p. e86147.
    17. 17)
      • 21. Balashanmugam, P., Santhosh, S., Giyaullah, H, et al: ‘Mycosynthesis, characterization and antibacterial activity of silver nanoparticles from Microporus xanthopus: a macro Mushroom’, Int. J. Innov. Res. Sci. Eng. Technol., 2013, 2, (11), pp. 62626270.
    18. 18)
      • 5. Bhattacharya, D., Gupta, R.K.: ‘Nanotechnology and potential of microorganisms’, Crit. Rev. Biotechnol., 2005, 24, (4), pp. 199204.
    19. 19)
      • 20. Peng, T.Y., Don, M.M.: ‘Antifungal activity of in-vitro grown Earliella scabrosa, a Malaysian fungus on selected wood -degrading fungi of rubberwood’, J. Phys. Sci., 2013, 24, (2), pp. 2133.
    20. 20)
      • 27. Mulvaney, P.: ‘Surface plasmon spectroscopy of nanosized metal particles’, Langmuir, 1996, 12, pp. 788800.
    21. 21)
      • 23. Liang, C.C., Park, A.Y., Guan, J.L.: ‘In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro’, Nat. Protocol, 2007, 2, (2), pp. 329333.
    22. 22)
      • 19. Guerra, G., Domínguez, O., Leal, M.R., et al: ‘Production of laccase and manganese peroxidase by white-rot fungi from sugarcane bagasse in solid bed: use for dyes decolourisation’, Sugar Tech, 2008, 10, (3), pp. 260264.
    23. 23)
      • 15. Bhat, R., Deshpande, R., Ganachari, S.V., et al: ‘Photoirradiated biosynthesis of silver nanoparticles using edible mushroom Pleurotus florida and their antibacterial activity studies’, Bioinorg. Chem. Appl., 2011, 2011, Article ID: 650979.
    24. 24)
      • 1. Rai, M., Yadav, A., Bridge, P., et al: ‘Myconanotechnology: a new and emerging science’, in Rai, M., Bridge, P. (Eds.): ‘Applied mycology’ (CAB International, New York, 2009, 14th edn.), pp. 258267.
    25. 25)
      • 24. Felice, F., Zambito, Y., Belardinelli, E., et al: ‘Effect of different chitosan derivatives on in vitro scratch wound assay: a comparative study’, Int. J. Biol. Macromol., 2015, 76, pp. 236241.
    26. 26)
      • 7. Mukherjee, P., Roy, M., Mandal, B.P., et al: ‘Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum’, Nanotechnology, 2008, 19, pp. 103110.
    27. 27)
      • 8. Farooqui, M.A., Chauhan, P.S., Krishnamoorthy, P., et al: ‘Extraction of silver nano-particles from the leaf extracts of Clerodendrum inerme’, Dig. J. Nanomater. Biostruct., 2010, 5, pp. 4349.
    28. 28)
      • 31. Adetutu, A., Morgan, W.A., Corcoran, O.: ‘Antibacterial, antioxidant and fibroblast growth stimulation activity of crude extracts of Bridelia ferruginea leaf, a wound-healing plant of Nigeria’, J. Ethnopharmacol., 2011, 133, pp. 116119.
    29. 29)
      • 25. Philip, D.: ‘Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract’, Spectrochim. Acta Mol. Biomol. Spectrosc., 2009, 73, pp. 374381.
    30. 30)
      • 10. Clark, R.A.F.: ‘Fibrin and wound healing’, Ann. New York Acad. Sci., 2001, 936, (1), pp. 355367.
    31. 31)
      • 32. Annan, K., Houghton, P.J.: ‘Antibacterial, antioxidant and fibroblast growth stimulation of aqueous extracts of Ficus asperifolia Miq. and Gossypium arboreum L., wound-healing plants of Ghana’, J. Ethnopharmacol., 2008, 119, pp. 141144.
    32. 32)
      • 4. Mandal, D., Bolander, M.E., Mukhopadhyay, D., et al: ‘The use of microorganisms for the formation of metal nanoparticles and their application’, Appl. Microbiol. Biotechnol., 2006, 69, pp. 485492.
    33. 33)
      • 26. Philip, D., Unni, C., Aromal, S.A., et al: ‘Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles’, Spectrochim. Acta Mol. Biomol. Spectrosc., 2011, 78, pp. 899904.
    34. 34)
      • 3. Kowshik, M., Deshmukh, N., Kulkarni, S.K., et al: ‘Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in fabrication of an ideal diode’, Biotechnol. Bioeng., 2002, 78, (5), pp. 583588.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5237
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5237
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading