access icon free Green synthesis of colloidal gold nanoparticles using latex from Hevea brasiliensis and evaluation of their in vitro cytotoxicity and genotoxicity

Latex extracted from Hevea brasiliensis tree has been used as a green alternative for preparing gold nanoparticles (Au NPs); however, no study evaluating the cytotoxic and genotoxic potential of Au NPs synthesised using H. brasiliensis has been published. The present study aimed to synthesise and characterise colloidal Au NPs using latex from H. brasiliensis and to evaluate their in vitro cytotoxicity and genotoxicity. Ideal conditions for the green synthesis of Au NPs were studied. In vitro cytotoxicity and genotoxicity of Au NPs in CHO-K1 cells was also evaluated. Our findings indicated that the ideal synthesis conditions of pH, temperature, reduction time, and concentrations of latex and HAuCl4 were 7.0, 85°C, 120 min, 3.3 mg/mL, and 5.0 mmol/L, respectively. LC5024 h of Au NPs was 119.164 ± 5.31 μg/mL. Lowest concentration of Au NPs tested presented minimal cytotoxicity and genotoxicity. However, high concentrations of Au NPs promoted DNA damage and cell death via apoptosis. On the basis of these findings, the authors optimised the use of an aqueous solution of H. brasiliensis latex as a reducing/stabilising agent for the green synthesis of Au NPs. Low concentrations of these NPs are biocompatible in normal cell types, suggesting that these NPs may be used in biological applications.

Inspec keywords: nanomedicine; reduction (chemical); DNA; pH; nanofabrication; cellular biophysics; colloids; molecular biophysics; biomedical materials; materials preparation; gold; nanoparticles; genetics

Other keywords: genotoxicity; cell death; DNA damage; colloidal Au NPs; Au; Hevea brasiliensis; green synthesis; in vitro cytotoxicity; normal cell types; colloidal gold nanoparticle; latex concentrations; H. brasiliensis latex

Subjects: Physics of subcellular structures; Other methods of preparation of materials; Biomolecular structure, configuration, conformation, and active sites; Biomedical materials; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Other methods of nanofabrication; Colloids; Nanotechnology applications in biomedicine

References

    1. 1)
      • 39. Dash, A.G.C., Ramakrishnaan, V., Sainkar, S.R., et al: ‘Pepsin–gold colloid conjugates: preparation, characterization and enzymatic activity’, Langmuir, 2001, 17, pp. 16741679.
    2. 2)
      • 38. Makarov, V.V., Love, A.J., Sinitsyna, O.V., et al: ‘‘Green’ nanotechnologies: synthesis of metal nanoparticles using plants’, ACTA Naturae., 2014, 6, (1), pp. 3544.
    3. 3)
      • 18. Danna, C.S., Cavalcante, D.G.S.M., Gomes, A.S., et al: ‘Silver nanoparticles embedded in natural rubber films: synthesis, characterization, and evaluation of In vitro toxicity’, J. Nanomater., 2016, 2016, Article ID 2368630, 10 pages.
    4. 4)
      • 21. Cabrera, F.C., Aoki, P.H.B., Aroca, R.F., et al: ‘Portable smart films for ultrasensitive detection and chemical analysis using SERS and SERRS’, J. Raman Spectrosc., 2011, 43, pp. 474477.
    5. 5)
      • 50. Patil, C.D., Borase, H.P., Suryawanshi, R.K., et al: ‘Trypsin inactivation by latex fabricated gold nanoparticles: A newstrategy towards insect control’, Enzyme Microb Technol., 2016, 92, pp. 1825.
    6. 6)
      • 5. Gajanan, G., Chang, M., Kim, J., et al: ‘Biogenic materialization using pear extract intended for the synthesis and design of ordered gold nanostructures’, J. Mater. Sci., 2011, 46, pp. 47414747.
    7. 7)
      • 1. Nozuri, M.: ‘Biosynthesis of gold nanoparticles using plant extracts’, Bioprocess Biosyst. Eng., 2015, 38, pp. 114.
    8. 8)
      • 11. Venkatpurwar, V., Pokharkar, V.: ‘Green synthesis of silver nanoparticles using marine polysaccharide: study of in vitro antibacterial activity’, Mater. Lett., 2011, 65, pp. 9991002.
    9. 9)
      • 52. de Barros, N.R., Chagas, P.A.M., Borges, F.A., et al: ‘Diclofenac potassium transdermal patches using natural rubber latex biomembranes as carrier’, J. Mater., 2015, 2015, pp. 17.
    10. 10)
      • 20. Barboza-Filho, C.G., Cabrera, F.C., Santos, R.J., et al: ‘The influence of natural rubber/Au nanoparticle membranes on the physiology of leishmania braziliensis’, J. Exp. Parasitol., 2011, 130, pp. 152158.
    11. 11)
      • 51. Yan, S., Gao, L., Zhang, S., et al: ‘Synthesis of Au/C catalyst with high electrooxidation activity’, Electrochim. Acta, 2013, 94, pp. 159164, doi:10.1016/j.electacta.2013.01.087.
    12. 12)
      • 43. Iravani, S.: ‘Green synthesis of metal nanoparticles using plants,Green Chem., 2011, 13, p. 2638.
    13. 13)
      • 6. Rao, K.J., Paria, S.: ‘Green synthesis of gold nanoparticles using aqueous Aegle marmelos leaf extract and their application for thiamine detection’, RSC Adv., 2014, 4, pp. 2864528652.
    14. 14)
      • 16. Bakar, N.H.H.A., Ismail, J., Bakar, M.A.: ‘Synthesis and characterization of silver nanoparticles in natural rubber’, Mater. Chem. Phys., 2007, 104, pp. 276283.
    15. 15)
      • 48. Hoseinpour, V., Ghaemi, N., Souri, M.: ‘Green synthesis, characterization, and photocatalytic activity of manganese dioxide nanoparticles’, Micro Nano. Lett., 2018, 13, pp. 15601563, doi: 10.1049/mnl.2018.5008.
    16. 16)
      • 37. Joglekar, S., Kodam, K., Dhaygude, M., et al: ‘Novel route for rapid biosynthesis of lead nanoparticles using aqueous extract of Jatropha curcas L. Latex’, Mater. Lett., 2011, 65, pp. 31703172.
    17. 17)
      • 2. Pardha-Saradhi, P., Yamal, G., Peddisetty, T., et al: ‘Root system of live plants is a powerful resource for the green synthesis of Au-nanoparticles’, RSC Adv., 2014, 4, pp. 73617367.
    18. 18)
      • 32. Mosmann, T.: ‘Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays’, J. Immunol. Meth., 1983, 65, pp. 5563.
    19. 19)
      • 27. Borase, H.P., Patil, C.D., Salunkhe, R.B., et al: ‘Phytolatex synthesized gold nanoparticles as novel agent to enhance sun protection factor of commercial sunscreens’, Int. J. Cosmet. Sci., 2014, 36, (6), pp. 571578.
    20. 20)
      • 61. Kong, B., Seog, J.H., Graham, L.M., et al: ‘Experimental considerations on the cytotoxicity of nanoparticles’, Nanomedicine (Lond), 2011, 6, pp. 929941.
    21. 21)
      • 12. Soni, N., Prakash, S.: ‘Microbial synthesis of spherical nanosilver and nanogold for mosquito control’, Ann. Microbiol., 2014, 64, pp. 10991111.
    22. 22)
      • 23. Tao, J., Tang, B., Li, P., et al: ‘Natural rubber particle modified fabrics with catalytic activity and hydrophobicity’, Compos. Sci. Technol., 2018, 162, pp. 123130.
    23. 23)
      • 14. Tidke, P.R., Gupta, I., Gade, A.K., et al: ‘Fungus-Mediated synthesis of gold nanoparticles and standardization of parameters for its biosynthesis’, Trans. Nanobiosc., 2014, 13, pp. 397402.
    24. 24)
      • 29. Das, R.K., Sharma, P., Nahar, P., et al: ‘Synthesis of gold nanoparticles using aqueous extract of Calotropis procera latex’, Mater. Lett., 2011, 65, pp. 610613.
    25. 25)
      • 41. Sanchez-Mendieta, V., Vilchis-Nestor, A.R.: ‘Green synthesis of nobel metal (Au, Ag, Pt) nanoparticles, assisted by plant-extracts’ (Intechopen, México, 2012), doi: 10.5772/34335.
    26. 26)
      • 24. Dykman, L.A., Khlebtsov, N.G.: ‘Gold nanoparticles in biology and medicine: recent advances and prospects’, Acta Nat., 2011, 3, pp. 3455.
    27. 27)
      • 53. Mishra, P., Ray, S., Sinha, S., et al: ‘Facile bio-synthesis of gold nanoparticles by using extract of Hibiscus sabdariffa and evaluation of its cytotoxicity against U87 glioblastoma cells under hyperglycemic condition’, Biochem. Eng. J., 2016, 105, pp. 264272.
    28. 28)
      • 56. Jia, Y.P., Ma, B.Y., Wei, X.W., et al: ‘The in vitro and in vivo toxicity of gold nanoparticles’, Chin. Chem. Lett., 2017, 28, pp. 691702.
    29. 29)
      • 28. Bar, H., Bhui, D.K., Sahoo, G.P., et al: ‘Green synthesis of silver nanoparticles using latex of Jatropha curcas, colloids and surfaces A: physicochem’, Eng. Asp., 2009, 339, pp. 134139.
    30. 30)
      • 4. Nadagouda, M.N., Iyanna, N., Lalley, J., et al: ‘Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts’, ACS Sustain. Chem. Eng., 2014, 2, pp. 17171723.
    31. 31)
      • 3. Rajan, A., Meenakumari, M., Philip, D.: ‘Shape tailored green synthesis and catalytic properties of gold nanocrystals’, Spectrochim. Acta A, 2014, 118, pp. 793799.
    32. 32)
      • 10. Noruzi, M., Zare, D., Khoshnevisan, K., et al: ‘Rapid green synthesis of gold nanoparticles using Rosa hybrid petal extract at room temperature’, Spectrochim. Acta A., 2011, 72, pp. 14611465.
    33. 33)
      • 31. TN801. Using UV-VIS as a tool to determine size and concentration of Spherical Gold Nanoparticles (SGNPs) from 5 to 100 nm. Technical Note, Nanopartz, 2008. https://www.nanopartz.com/technical_notes.asp.
    34. 34)
      • 19. Cabrera, F.C., Mohan, H., Job, A.E., et al: ‘Green synthesis of gold nanoparticles with self-sustained natural rubber membranes,J. Nanomater., 2013, 2013, Article ID 710902, 10 pages.
    35. 35)
      • 57. Furuya, M., Shimono, N., Yamazaki, K., et al: ‘Evaluation on cytotoxicity of natural rubber latex nanoparticles and application in bone tissue engineering’, J. Soft. Mater., 2017, 12, pp. 110.
    36. 36)
      • 55. Valodkar, M., Jadeja, R.N., Thounaojam, M.C., et al: ‘In vitro toxicity study of plant latex capped silver nanoparticles in human lung carcinoma cells’, Mater. Sci. Eng. C, 2011, 31, pp. 17231728.
    37. 37)
      • 8. Nagajyothi, P.C., Lee, K.D., Sreekanth, T.V.M.: ‘Biogenic synthesis of gold nanoparticles (quasi-spherical, triangle, and hexagonal) using Lonicera Japonica flower extract and Its antimicrobial activity’, Synth. React. Inorg. Met.-Org. Nano-Metal Chem., 2014, 44, pp. 10111018.
    38. 38)
      • 58. Furuya, M., Shimono, N., Yamazaki, K., et al: ‘Cytotoxicity and anticancer activity of natural rubber latex particles for cancer cells’, Mater. Today Chem., 2017, 5, pp. 6371.
    39. 39)
      • 49. Singh, A.K., Srivastava, O.N.: ‘One-Step green synthesis of gold nanoparticles using black cardamom and effect of pH on Its synthesis’, Nanoscale Res. Lett., 2015, 10, p. 1055.
    40. 40)
      • 17. Guidelli, E.J., Ramos, A.P., Zaniquelli, M.E.D., et al: ‘Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis’, Spectrochim. Acta A, 2011, 82, pp. 140145.
    41. 41)
      • 22. Tao, J., He, D., Tang, B., et al: ‘In situ synthesis of natural rubber latex-supported gold nanoparticles for flexible SERS substrates’, RSC Adv., 2015, 5, pp. 4916849174.
    42. 42)
      • 26. Hanan, N.A., Chiu, H.I., Ramachandran, M.R., et al: ‘Cytotoxicity of plant-mediated synthesis of metallic nanoparticles: A systematic review,Int. J. Mol. Sci., 2018, 19, p. 1725.
    43. 43)
      • 15. Annamalai, A., Christina, V.L.P., Sudha, D., et al: ‘Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. Leaf extract’, Colloids Surf. B, 2013, 108, pp. 6065.
    44. 44)
      • 7. Das, M.N.A., Batuta, S., Roy, N., et al: ‘Murraya koenegii spreng. Leaf extract: An efficient green multifunctional agent for the controlled synthesis of Au nanoparticles’, ACS Sustain. Chem. Eng., 2014, 2, pp. 652664.
    45. 45)
      • 36. Seager, S.L., Slabaugh, M.R.: ‘Organic and biochemistry for today’ (Brooks/Cole Pub, NY, USA, 1999, 4th edn.).
    46. 46)
      • 34. Kobayashi, H., Suguyama, C., Morikawa, Y.: ‘A comparison between manual microscopic analysis and computerized image analysis in the single cell gel electrophoresis’, MMS Commun., 1995, 3, pp. 103115.
    47. 47)
      • 59. Baharara, J., Ramezani, T., Divsalar, A., et al: ‘Induction of apoptosis by green synthesized gold nanoparticles through activation of caspase-3 and 9 in human cervical cancer cells’, Avicenna J. Med. Biotechnol., 2016, 8, pp. 7583.
    48. 48)
      • 60. Geetha, R., Ashokkumar, T., Tamilselvan, S., et al: ‘Green synthesis of gold nanoparticles and their anticancer activity’, Cancer Nanotechnol., 2013, 4, pp. 9198.
    49. 49)
      • 25. Keong, L.C., Halim, A.S.: ‘In vitro models in biocompatibility assessment for biomedical-grade chitosan derivatives in wound management’, Int. J. Mol. Sci., 2009, 10, (3), pp. 13001313.
    50. 50)
      • 46. Souri, M., Hoseinpour, V., Shakeri, A., et al: ‘Optimisation of green synthesis of MnO nanoparticles via utilising response surface methodology’, IET Nanobiotechnol., 2018, 12, pp. 822827.
    51. 51)
      • 45. Dubey, M., Bhadauria, S., Kushwah, B.S.: ‘Green synthesis of nanoparticles from extract of Eucalyptus hybrid (safeda) leaf’, Dig. J. Nanomater. Biostruct, 2009, 4, pp. 537543.
    52. 52)
      • 13. Narayanan, K.B., Sakthivel, N.: ‘Synthesis and characterization of nano-gold composite using cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol’, J. Hazard. Mater., 2011, 189, pp. 519525.
    53. 53)
      • 35. Amnuaypornsri, S., Sakdapipanich, J., Tanaka, Y.Highly purified natural rubber by saponificaion of latex: analysis of green and cured properties,J. Appl. Polym. Sci., 2010, 118, pp. 35243531.
    54. 54)
      • 54. Kalpana, D., Pichiah, P.T., Sankarganesh, A., et al: ‘Biogenesis of gold nanoparticles using plant powders and assessment of in vitro cytotoxicity in 3T3-L1 cell line’, J. Pharm. Innov., 2013, 8, pp. 265275.
    55. 55)
      • 47. Hoseinpour, V., Ghaemi, N.: ‘Novel ZnO–MnO2–Cu2O triple nanocomposite: facial synthesis, characterization, antibacterial activity and visible light photocatalytic performance for dyes degradation - A comparative study’, Mater. Res. Express, 2018, 5, p. 085012.
    56. 56)
      • 33. Singh, N.P., McCoy, M.T., Tice, R.R.: ‘A single technique for quantification of low levels of DNA damage in individual cells’, Exp. Cell Res., 1988, 175, pp. 184191.
    57. 57)
      • 42. Banerjee, P., Satapathy, M., Mukhopahayay, A., et al: ‘Leaf extract mediated green synthesis of silver nanoparticles from widely availabre Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis’, Bioresour. Bioprocess, 2014, 1:3, pp. 110.
    58. 58)
      • 30. Haiss, W., Thanh, N.T.K., Aveyard, J., et al: ‘Determination of size and concentration of gold nanoparticles from UV-Vis Spectra’, Anal Chem., 2007, 79, pp. 42154221.
    59. 59)
      • 44. Valodkar, M., Nagar, P.S., Jadeja, R.N., et al: ‘Euphorbiaceae latex induxed green synthesis of non-cytoxic nanoparticles solutions: A rational approach to antimicrobial applications,Physicochem. Eng. Asp., 2011, 384, pp. 337344.
    60. 60)
      • 40. Rai, M., Yadav, A.: ‘Plants as potential synthesiser of precious metal nanoparticles: progress and prospects’, IET Nanobiotechnol., 2013, 7, pp. 117124.
    61. 61)
      • 9. Vijayakumar, R., Devi, V., Adavallan, K., et al: ‘Green synthesis and characterization of gold nanoparticles using extract of anti-tumor potent Crocus sativus’, Phys., 2011, 44, pp. 665671.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5225
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5225
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading