access icon free Plasma treated fabrics coated with naturally derived Ag-NPs for biomedical application

Ethnic value of many known plants are underexploited for medicinal application besides their proven traditional qualities. One such plant known for wound healing is Tridax procumbens. This plant has wound healing property and is commercially unexploited. Silver nanoparticle (Ag-NP) were synthesized using this plant extracts using different solvents (methanol, ethyl acetate and aqueous), which exhibit resonance at 426, 424 and 418 nm, respectively. This plant-mediated Ag-NPs have strong anti-bactericidal activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Streptococcus pyogenes, Klebsiella pneumonia, Serratia marcescens and Bacillus subtilis with methanol extract. Further instance, elemental composition was confirmed by energy dispersive X-ray analysis and particle size ranges were observed at 80–200 nm with spherical shape nanoparticles by scanning electron microscopy and transmission electron microscopy analysis. The biocompatibility of Ag-NPs was assessed using fibroblast cell line (L929) by MTT assay with 109.35 µg IC50 value. The oxygen plasma treated and non-treated bamboo spunlaced nonwoven fabrics were coated with the Ag-NPs by exhaust method. Contact angle and water retention revealed significant difference in absorption ability of plasma treated fabric. Field emission scanning electron microscopy revealed the presence of Ag-NPs in plasma coated fabrics. The fabricated cloth was studied for anti-microbial and microbial penetration ability.

Inspec keywords: wounds; transmission electron microscopy; silver; antibacterial activity; biomedical materials; X-ray diffraction; thermal analysis; X-ray chemical analysis; contact angle; fabrics; nanofabrication; microorganisms; solvents (industrial); field emission scanning electron microscopy; woven composites; particle size; nanoparticles; organic compounds; plasma materials processing

Other keywords: biomedical application; scanning electron microscopy; ethnic value; plasma coated fabrics; bamboo material; size 426.0 nm; ethyl acetate; fibroblast cell line; exhaust method; size 80.0 nm to 200.0 nm; silver nanoparticle synthesis; Escherichia coli; field emission scanning electron microscopy; Bacillus subtilis; Ag; water retention; Klebsiella pneumonia; energy dispersive X-ray analysis; Staphylococcus aureus; antibactericidal activity; absorption ability; microbial penetration ability; material biocompatibility; oxygen plasma treatment; nonwoven fabrics; antimicrobial property; Serratia marcescens; Streptococcus pyogenes; size 418.0 nm; methanol; fabricated cloth; Tridax procumbens extracts; wound healing property; elemental composition; size 424.0 nm; medicinal application; transmission electron microscopy; Pseudomonas aeruginosa; contact angle; particle size; solvents

Subjects: Nanotechnology applications in biomedicine; Products and commodities; Biomedical materials; Other methods of nanofabrication; Nanofabrication; Engineering materials; Plasma applications in manufacturing and materials processing

References

    1. 1)
      • 33. Kalainila, P., Subha, V., Ernest Ravindran, R.S., et al: ‘Synthesis and characterization of silver nanoparticles from Erythrina indica’, Asian J. Pharm. Clin. Res., 2014, 7, pp. 3943.
    2. 2)
      • 23. Agrawal, S., Khadase, S., Talele, G.: ‘Bioactive immunomodulatory fraction from Tridax procumbens’, Asian J. Biol. Sci., 2010, 3, (3), pp. 120127.
    3. 3)
      • 6. Paul, J., Galvin, L.: ‘Opportunities and challenges arising from nanotechnology inventions’, Int. Fiber J., 2004, 19, (3), pp. T316T318.
    4. 4)
      • 7. Jeong, S.H., Yeo, S.Y., Yi, S.C.: ‘The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers’, J. Mater. Sci., 2005, 40, (20), pp. 54075411.
    5. 5)
      • 1. Kokabi, M., Sirousazar, M, Hassan, Z.M.: ‘PVA–clay nanocomposite hydrogels for wound dressing’, Eur. Polym. J., 2007, 43, (3), pp. 773781.
    6. 6)
      • 20. Li, S., Zhu, T., Huang, J., et al: ‘Durable antibacterial and UV-protective Ag/TiO2@ fabrics for sustainable biomedical application’, Int. J. Nanomed., 2017, 12, pp. 25932606.
    7. 7)
      • 8. Ahmed, S., Ahmad, M., Swami, B.L., et al: ‘A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise’, J. Adv. Res., 2016, 7, (1), pp. 1728.
    8. 8)
      • 10. Savithramma, N., Lingarao, M., Basha, S.: ‘Antifungal efficacy of silver nanoparticles synthesized from the medicinal plants’, Der Pharma Chemica, 2011, 3, (3), pp. 364372.
    9. 9)
      • 37. Mohanta, Y.K., Panda, S.K., Jayabalan, R., et al: ‘Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.)’, Front. Mol. Biosci., 2017, 1, pp. 110.
    10. 10)
      • 39. Ihrig, J.L., Lai, D.Y.F.: ‘Contact angle measurement’, J. Chem. Educ., 1957, 34, (4), pp. 196198.
    11. 11)
      • 21. Renuka, M., Nishadh, P., Jigar, S., et al: ‘Mucoadhesive wound healing film of doxycycline hydrochloride’, Int. J. Drug Dev. Res., 2012, 4, pp. 128140.
    12. 12)
      • 31. Aruna, A., Nandhini, R., Karthikeyan, V., et al: ‘Synthesis and characterization of silver nanoparticles of insulin plant (Costus pictus D.Don) leaves’, Asian J. Biomed. Pharm. Sci., 2014, 4, (34), pp. 16.
    13. 13)
      • 44. Jenneman, G.E., McInerney, M.J., Knapp, R.Y.: ‘Microbial penetration through nutrient saturated berea sandstone’, Appl. Environ. Microbiol., 1985, 50, pp. 383391.
    14. 14)
      • 26. Mohale, D., Pokrna, A., Sanghani, C., et al: ‘Antimicrobial activity of methanolic extract of flowers of Tridax procumbens’, Indian J. Pharmacy Pharmacol., 2014, 1, (1), pp. 3136.
    15. 15)
      • 42. Gomathi, N., Sureshkumar, A., Neogi, S.: ‘RF plasma-treated polymers for biomedical applications’, Curr. Sci., 2008, 94, pp. 14781486.
    16. 16)
      • 25. Bhati–Kushwaha, H., Malik, C.: ‘Biosynthesis of silver nanoparticles using fresh extracts of Tridax procumbens linn’, Indian J. Exp. Biol., 2014, 52, pp. 359368.
    17. 17)
      • 9. Veerapur, V., Palkar, M., Srinivasa, H., et al: ‘The effect of ethanol extract of Wrightia tinctoria bark on wound healing in rats’, J. Nat. Remedies, 2004, 4, (2), pp. 155159.
    18. 18)
      • 36. Jyoti, K., Baunthiyal, M., Singh, A.: ‘Characterization of silver nanoparticles synthesized using Urtica dioica linn. Leaves and their synergistic effects with antibiotics’, J. Radiat. Res. Appl. Sci., 2016, 9, (3), pp. 217227.
    19. 19)
      • 3. Gupta, B., Agarwal, R., Alam, M.: ‘Textile-based smart wound dressings’, Indian J. Fibre Text. Res., 2010, 35, (2), pp. 174187.
    20. 20)
      • 12. Dhanalakshmi, T., Rajendran, S.: ‘Synthesis of silver nanoparticles using Tridax procumbens and its antimicrobial activity’, Arch. Appl. Sci. Res., 2012, 3, pp. 12891293.
    21. 21)
      • 16. Manjula, S., Shanmugasundaram, O.L.: ‘Effect of oxygen plasma treatment on wicking behaviour of bamboo nonwoven fabric’, Int. J. Res. Sci. Technol., 2017, 8, pp. 205209.
    22. 22)
      • 38. Krishnan, V., Bupesh, G., Manikandan, E., et al: ‘Green synthesis of silver nanoparticles using Piper nigrum concoction and its anticancer activity against MCF-7 and Hep-2 cell lines’, J. Antimicrobial Agents, 2016, 3, pp. 15.
    23. 23)
      • 24. Joseph, S., Mathew, B.: ‘Facile synthesis of silver nanoparticles and their application in dye degradation’, Mater. Sci. Eng. B, 2015, 195, pp. 9097.
    24. 24)
      • 41. Benakashani, F., Allafchain, A.R., Jalali, S.A.H.: ‘Biosynthesis of silver nanoparticles using Capparis spinosa L. Leaf extract and bacterial activity’, Karbala Int. J. Modern Sci., 2016, 2, (4), pp. 251258.
    25. 25)
      • 17. Odebiyi, O., Sofowora, E.: ‘Phytochemical screening of Nigerian medicinal plants’. 2nd OAU. in STRC Inter-African Symp. on Traditional Pharmaco Poeia and African Medicinal Plants, Lagos, 1979, pp. 629634.
    26. 26)
      • 45. Bazaz, M.R., Mashreghi, M., Shahri, N.M., et al: ‘Evaluation of antimicrobial and healing activities of frog skin on Guinea pigs wounds’, Jundhishapur J. Microbiol., 2015, 8, pp. 16.
    27. 27)
      • 5. Saravanan, M., Thambidurai, A.: ‘Spunlace’, Asian Text. J., 2013, 22, (3), pp. 4551.
    28. 28)
      • 15. Pivec, T., Peršin, Z., Kolar, M., et al: ‘Modification of cellulose non-woven substrates for preparation of modern wound dressings’, Tex. Res. J., 2014, 84, (1), pp. 96112.
    29. 29)
      • 35. Manjula, P., Sevarkodiyone, S.P.: ‘Biosynthesis and characterization of silver nanoparticles from the peel of Amorphophallus campanulatus (YAM)’, Int. J. Zool. Appl. Biosci., 2016, 1, pp. 5762.
    30. 30)
      • 4. Erdumlu, N., Ozipek, B.: ‘Investigation of regenerated bamboo fibre and yarn characteristics’, Fibres Text. East. Eur., 2008, 16, 4(69), pp. 4347.
    31. 31)
      • 43. Gorenšek, M., Gorjanc, M., Bukosek, V., et al: ‘Functionalization of polyester fabric by Ar/N2 plasma and silver’, Tex. Res. J., 2010, 80, (16), pp. 16331642.
    32. 32)
      • 11. Bhalerao, S.A., Kelkar, T.S.: ‘Phytochemical and pharmacological potential of Tridax procumbens linn’, Int. J. Adv. Biol. Res., 2012, 3, pp. 392395.
    33. 33)
      • 28. Kushwaha, H.B., Malik, C.P.: ‘Assessment of antibacterial and antifungal activities of silver nanoparticles obtained from the callus extracts (stem and leaf) of Tridax procumbens’, Indian J. Biotechnol., 2014, 13, pp. 114120.
    34. 34)
      • 34. Premasudha, P., Venkataramana, M., Abirami, M., et al: ‘Biological synthesis and characterization of silver nanoparticles using eclipta alba leaf extract and evaluation of its cytotoxic and antimicrobial potential’, Indian Acad. Sci., 2015, 38, pp. 965973.
    35. 35)
      • 13. Tippayawat, P., Phromviyo, N., Boueroy, P., et al: ‘Green synthesis of silver nanoparticles in Aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity’, Peer J., 2016, 4, p. e2589doi 10.7717/peerj.2589.
    36. 36)
      • 22. Ikewuchi, C.C., Ikewuchi, J.C., Ifeanacho, M.O.: ‘Phytochemical composition of Tridax procumbens Linn leaves: potential as a functional food’, Food Nutr. Sci., 2015, 6, (11), pp. 9921004.
    37. 37)
      • 2. Kim, G.H., Kang, K.N., Kim, H.J., et al: ‘Wound dressings for wound healing and drug delivery’, Tissue Eng. Regenerative Med., 2011, 8, (1), pp. 17.
    38. 38)
      • 30. Kumari, V.P., Thirumurugan, V.: ‘Green synthesis and characterization of silver nanoparticles using Tinosopora Cordifolia extract and antimicrobial activity’, Int. J. Adv. Res. Idea Innov. Technol., 2017, 6, pp. 421426.
    39. 39)
      • 40. Gindl, M., Sin, G., Gindl, W., et al: ‘A comparison of different methods to calculate the surface free energy of wood using contact angle measurements’, Colloids Surf. A, Physicochem. Eng. Aspects, 2001, 181, pp. 279287.
    40. 40)
      • 18. Mosmann, T.: ‘Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays’, J. Immunol. Methods, 1983, 65, (1–2), pp. 5563.
    41. 41)
      • 29. Das, J., Das, M.P., Velusamy, P.: ‘Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens’, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 2013, 104, pp. 265270.
    42. 42)
      • 14. Senthil, B., Devasena, T., Prakash, B., et al: ‘Non-cytotoxic effect of green synthesized silver nanoparticles and its antibacterial activity’, J. Photochem. Photobiol. B, Biol., 2017, 177, pp. 17.
    43. 43)
      • 32. Kalaiselvi, M., Subbaiya, R., Selvam, M.: ‘Synthesis and characterization of silver nanoparticles from leaf extract of Parthenium hysterophorus and its antibacterial and antioxidant activity’, Int. J. Microbiol. Appl. Sci., 2013, 2, pp. 220227.
    44. 44)
      • 19. Gulrajani, M.L., Gupta, D., Periyasamy, S., et al: ‘Preparation and application of silver nanoparticles on silk for imparting antimicrobial properties’, J. Appl. Polym. Sci., 2008, 108, pp. 614623.
    45. 45)
      • 27. Khan, F.A., Zahoor, M., Jalal, A., et al: ‘Green synthesis of silver nanoparticles by using Ziziphus nummularia leaves aqueous extract and their biological activities’, J. Nanomater., 2016, 2016, pp. 18.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5218
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5218
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading