Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Electrochemical assessment of the interaction of microbial living cells and carbon nanomaterials

This work considers the effects of various carbon nanomaterials and fibres on bioelectrocatalytic and respiratory activity of bacterial cells during the oxidation of ethanol in the presence of an electron transport mediator. Gluconobacter oxydans sbsp. industrius VKM B-1280 cells were immobilised on the surfaces of graphite electrodes and had an adsorption contact with a nanomaterial (multi-walled carbon nanotubes, thermally expanded graphite, highly oriented pyrolytic graphite, graphene oxide, reduced graphene oxide). The electrochemical parameters of the electrodes (the polarisation curves, the value of generated current at the introduction of substrate, the impedance characteristics) were measured in two-electrode configuration. Modification by multi-walled carbon nanotubes led to the increase of microbial fuel cell (MFC) electric power by 26%. The charge transfer resistance of modified electrodes was 47% lower than unmodified ones. Thermally expanded and pyrolytic graphites had a slight negative effect on the electrochemical properties of modified electrodes. The respiratory activity of bacterial cells did not change in the presence of nanomaterials. The data can be used in the development of microbial biosensors and MFC electrodes based on Gluconobacter cells.

References

    1. 1)
      • 11. Bandodkar, A.J., Wang, J.: ‘Wearable biofuel cells: a review’, Electroanal., 2016, 28, pp. 11881200.
    2. 2)
      • 17. Halámková, L., Halámek, J., Bocharova, V., et al: ‘Implanted biofuel cell operating in a living snail’, J. Am. Chem. Soc., 2012, 134, pp. 50405043.
    3. 3)
      • 33. Bertokova, A., Bertok, T., Filip, J., et al: ‘Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells’, Chem. Pap., 2015, 69, pp. 2741.
    4. 4)
      • 36. Babkina, E., Chigrinova, E., Ponamoreva, O., et al: ‘Bioelectrocatalytic oxidation of glucose by immobilized bacteria Gluconobacter oxydans. Evaluation of water-insoluble mediator efficiency’, Electroanal., 2006, 18, pp. 20232029.
    5. 5)
      • 46. Šefčovičová, J., Tkac, J.: ‘Application of nanomaterials in microbial-cell biosensor constructions’, Chem. Pap., 2015, 69, pp. 4253.
    6. 6)
      • 13. Gamella, M., Koushanpour, A., Katz, E.: ‘Biofuel cells – activation of micro- and macro-electronic devices’, Bioelectrochem, 2017, 119, pp. 3342.
    7. 7)
      • 25. Liu, S.B., Wei, L., Hao, L., et al: ‘Sharper and faster ‘nano darts’ kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube’, ACS Nano, 2009, 3, pp. 38913902.
    8. 8)
      • 28. Simon-Deckers, A., Loo, S., Mayne-L'hermite, M., et al: ‘Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria’, Environ. Sci. Technol., 2009, 43, pp. 84238429.
    9. 9)
      • 45. Zou, Y.J., Xiang, C.L., Yang, L.N., et al: ‘A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material’, Int. J. Hydrogen Energy, 2008, 33, pp. 48564862.
    10. 10)
      • 43. He, Z., Mansfeld, F.: ‘Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies’, Energy Environ. Sci., 2009, 2, pp. 215219.
    11. 11)
      • 44. Kumar, S., Acharya, S.K.: ‘2,6-Dichloro-phenol indophenol prevents switch-over of electrons between the cyanide-sensitive and -insensitive pathway of the mitochondrial electron transport chain in the presence of inhibitors’, Anal. Biochem., 1999, 268, pp. 8993.
    12. 12)
      • 4. Sun, J.Z., Kingori, G.P., Si, R.W., et al: ‘Microbial fuel cell-based biosensors for environmental monitoring: a review’, Water Sci. Technol., 2015, 71, pp. 801809.
    13. 13)
      • 22. Putzbach, W., Ronkainen, N.J.: ‘Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review’, Sensors, 2013, 13, pp. 48114840.
    14. 14)
      • 5. Logan, B.E., Hamelers, B., Rozendal, R., et al: ‘Microbial fuel cells: methodology and technology’, Environ. Sci. Technol., 2006, 40, pp. 51815192.
    15. 15)
      • 39. Liu, H., Cheng, S.A., Logan, B.E.: ‘Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration’, Environ. Sci. Technol., 2005, 39, pp. 54885593.
    16. 16)
      • 42. Reshetilov, A.N., Plekhanova, Y.V., Tarasov, S.E., et al: ‘Effect of some carbon nanomaterials on ethanol oxidation by Gluconobacter oxydans bacterial cells’, Appl. Biochem. Microbiol., 2017, 53, pp. 123129.
    17. 17)
      • 10. Katz, E., MacVittie, K.: ‘Implanted biofuel cells operating in vivo – methods, applications and perspectives – feature article’, Energy Environ. Sci., 2013, 6, p. 2791. idoi:10.1039/c3ee42126k.
    18. 18)
      • 21. Šefčovičová, J., Filip, J., Gemeiner, P., et al: ‘High performance microbial 3D bionanocomposite as a bioanode for a mediated biosensor device’, Electrochem. Commun., 2011, 13, pp. 966968.
    19. 19)
      • 30. Kasemets, K., Ivask, A., Dubourguier, H.C., et al: ‘Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast saccharomyces cerevisiae’, Toxicol. in Vitro, 2009, 23, pp. 11161122.
    20. 20)
      • 27. Yang, F., Jiang, Q., Xie, W., et al: ‘Effects of multi-walled carbon nanotubes with various diameters on bacterial cellular membranes: cytotoxicity and adaptive mechanisms’, Chemosphere, 2017, 185, pp. 162170.
    21. 21)
      • 38. Logan, B.E.: ‘Microbial fuel cells’ (John Wiley & Sons, Hoboken, NJ, 2008).
    22. 22)
      • 19. Su, L., Jia, W., Hou, C., et al: ‘Microbial biosensors: a review’, Biosens. Bioelectron., 2012, 26, pp. 17881799.
    23. 23)
      • 37. Wang, X., Gu, H., Yin, F., et al: ‘A glucose biosensor based on Prussian blue/chitosan hybrid film’, Biosens. Bioelectron., 2009, 24, pp. 15271530.
    24. 24)
      • 15. Rasmussen, M., Abdellaoui, S., Minteer, S.D.: ‘Enzymatic biofuel cells: 30 years of critical advancements’, Biosens. Bioelectron., 2016, 76, pp. 91102.
    25. 25)
      • 9. Schroder, U.: ‘From in vitro to in vivo – biofuel cells are maturing’, Angew. Chem. Int. Ed., 2012, 51, pp. 73707372.
    26. 26)
      • 8. Balat, M.: ‘Microbial fuel cells as an alternative energy option’, Energy Sources, Part A, 2010, 32, pp. 2635.
    27. 27)
      • 16. Vashist, S.K., Luong, J.H.T.: ‘Recent advances in electrochemical biosensing schemes using graphene and graphene-based nanocomposites’, Carbon. N. Y., 2014, 84, pp. 519550.
    28. 28)
      • 31. Bianco, A.: ‘Graphene: safe or toxic? The two faces of the medal’, Angew. Chem. Int. Ed., 2013, 52, pp. 49864997.
    29. 29)
      • 3. Virdis, B., Freguia, S., Rozendal, R.A., et al: ‘Microbial fuel cells’ (Elsevier Science, Oxford, 2011), pp. 641665.
    30. 30)
      • 24. Kang, S., Mauter, M.S., Elimelech, M.: ‘Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity’, Environ. Sci. Technol., 2008, 42, pp. 75287534.
    31. 31)
      • 26. Yang, C.N., Mamouni, J., Tang, Y.G., et al: ‘Antimicrobial activity of single-walled carbon nanotubes: length effect’, Langmuir, 2010, 26, pp. 1601316019.
    32. 32)
      • 1. Bullen, R.A., Arnot, T.C., Lakeman, J.B., et al: ‘Biofuel cells and their development’, Biosens. Bioelectron., 2006, 21, pp. 20152045.
    33. 33)
      • 41. Sekar, N., Ramasamy, R.P.: ‘Electrochemical impedance spectroscopy for microbial fuel cell characterization’, J. Microb. Biochem. Technol., 2013, 6, pp. 114, doi:10.4172/1948-5948.S6-004.
    34. 34)
      • 23. Filip, J., Tkac, J.: ‘Is graphene worth using in biofuel cells?Electrochim. Acta, 2014, 136, pp. 340354.
    35. 35)
      • 40. Ghasemi, M., Wan Daud, W.R., Hassan, S., et al: ‘Nano-structured carbon as electrode material in microbial fuel cells: a comprehensive review’, J. Alloys Compounds, 2013, 580, pp. 245255.
    36. 36)
      • 12. Goswami, R., Mishra, V.K.: ‘A review of design, operational conditions and applications of microbial fuel cells’, Biofuels, 2017, 9, pp. 203220.
    37. 37)
      • 14. Luz, R.A.S., Pereira, A.R., de Souza, J.C.P., et al: ‘Enzyme biofuel cells: thermodynamics, kinetics and challenges in applicability’, ChemElectroChem, 2014, 1, pp. 17511777.
    38. 38)
      • 7. Rahimnejad, M., Adhami, A., Darvari, S., et al: ‘Microbial fuel cell as new technology for bioelectricity generation: a review’, Alexandria Eng. J., 2015, 54, pp. 745756.
    39. 39)
      • 35. Svitel, J., Curilla, O., Tkac, J.: ‘Microbial cell-based biosensor for sensing glucose, sucrose or lactose’, Biotechnol. Appl. Biochem., 1998, 27, pp. 153158.
    40. 40)
      • 20. Lim, J.W., Ha, D., Lee, J., et al: ‘Review of micro/nanotechnologies for microbial biosensors’, Bioeng. Biotechnol., 2015, 3, p. 61. idoi:10.3389/fbioe.2015.00061.
    41. 41)
      • 34. Tkac, J., Svitel, J., Voštiar, I., et al: ‘Membrane-bound dehydrogenases from Gluconobacter sp.: interfacial electrochemistry and direct bioelectrocatalysis’, Bioelectrochemistry, 2009, 76, pp. 5362.
    42. 42)
      • 2. Santoro, C., Arbizzani, C., Erable, B., et al: ‘Microbial fuel cells: from fundamentals to applications. A review’, J. Power Sources, 2017, 356, pp. 225244.
    43. 43)
      • 6. Kannan, A.M., Renugopalakrishnan, V., Filipek, S., et al: ‘Bio-batteries and bio-fuel cells: leveraging on electronic charge transfer proteins’, J. Nanosci. Nanotechnol., 2009, 3, pp. 16651678.
    44. 44)
      • 29. Jiang, W., Mashayekhi, H., Xing, B.S.: ‘Bacterial toxicity comparison between nano- and micro-scaled oxide particles’, Environ. Pollut., 2009, 157, pp. 16191625.
    45. 45)
      • 32. Deppenmeieret, U., Hoffmeister, M., Prust, C.: ‘Biochemistry and biotechnological applications of Gluconobacter strains’, Appl. Microbiol. Biotechnol., 2002, 60, pp. 233242.
    46. 46)
      • 18. Zebda, А, Cosnier, S., Alcaraz, J.P., et al: ‘Single glucose biofuel cells implanted in rats power electronic devices’, Sci. Rep., 2013, 3, p. 1516.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5172
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5172
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address