access icon free Bio-green synthesis ZnO-NPs in Brassica napus pollen extract: biosynthesis, antioxidant, cytotoxicity and pro-apoptotic properties

The bio-green methods of synthesis nanoparticles (NPs) have advantages over chemo-physical procedures due to cost-effective and ecofriendly products. The goal of current investigation is biosynthesis of zinc oxide NPs (ZnO-NPs) and evaluation of their biological assessment. Water extract of Brassica napus pollen [rapeseed (RP)] prepared and used for the synthesis of ZnO-NPs and synthesised ZnO-NP characterised using ultraviolet–visible, X-ray diffraction, Fourier-transform infrared spectroscopy, field emission scanning electron microscope and transmission electron microscope. Antioxidant properties of ZnO-NPs, cytotoxic and pro-apoptotic potentials of NPs were also evaluated. The results showed that ZnO-NPs have a hexagonal shape with 26 nm size. ZnO-NPs synthesised in RP (RP/ZnO-NPs) exhibited the good antioxidant potential compared with the butylated hydroxyanisole as a positive control. These NPs showed the cytotoxic effects against breast cancer cells (M.D. Anderson-Metastasis Breast cancer (MDA-MB)) with IC50 about 1, 6 and 6 μg/ml after 24, 48 and 72 h of exposure, respectively. RP/ZnO-NPs were found effective in increasing the expression of catalase enzyme, the enzyme involved in antioxidants properties of the cells. Bio-green synthesised RP/ZnO-NPs showed antioxidant and cytotoxic properties. The results of the present study support the advantages of using the bio-green procedure for the synthesis of NPs as an antioxidant and as anti-cancer agents.

Inspec keywords: cellular biophysics; nanofabrication; enzymes; X-ray diffraction; nanoparticles; ultraviolet spectra; toxicology; nanomedicine; field emission scanning electron microscopy; transmission electron microscopy; semiconductor growth; cancer; molecular biophysics; biochemistry; wide band gap semiconductors; visible spectra; II-VI semiconductors; particle size; antibacterial activity; biomedical materials; zinc compounds; Fourier transform infrared spectra

Other keywords: transmission electron microscope; time 48.0 hour; breast cancer cells MDA-MB; X-ray diffraction; bio-green synthesised RP-ZnO-NPs; size 26.0 nm; pro-apoptotic potentials; zinc oxide NPs; antioxidant properties; bio-green procedure; synthesised ZnO-NP; field emission scanning electron microscope; ZnO; catalase enzyme; cytotoxic effects; time 24.0 hour; Fourier-transform infrared spectroscopy; bio-green synthesis ZnO-NPs; time 72.0 hour

Subjects: Biomedical materials; Optical properties of II-VI and III-V semiconductors (thin films, low-dimensional and nanoscale structures); Cellular biophysics; Nanotechnology applications in biomedicine; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Infrared and Raman spectra in inorganic crystals; Visible and ultraviolet spectra of II-VI and III-V semiconductors; Physical chemistry of biomolecular solutions and condensed states; Other methods of nanofabrication; Nanometre-scale semiconductor fabrication technology; II-VI and III-V semiconductors

References

    1. 1)
      • 35. Mandak, E., Zhu, D., Godany, T.A., et al: ‘Fourier transform infrared spectroscopy and Raman spectroscopy as tools for identification of steryl ferulates’, J. Agric. Food Chem., 2013, 61, (10), pp. 24462452.
    2. 2)
      • 21. Znaidi, L., Illia, G.S., Benyahia, S., et al: ‘Oriented ZnO thin films synthesis by sol–gel process for laser application’, Thin Solid Films, 2003, 428, (1–2), pp. 257262.
    3. 3)
      • 22. Heller, R.B., McGannon, J., Weber, A.H.: ‘Precision determination of the lattice constants of zinc oxide’, J. Appl. Phys., 1950, 21, (12), pp. 12831284.
    4. 4)
      • 15. Maritim, A.C., Sanders, R.A., Watkins, J.B.III: ‘Diabetes, oxidative stress, and antioxidants: a review’, J. Biochem. Mol. Toxicol., 2003, 17, (1), pp. 2438.
    5. 5)
      • 23. Lin, N., Dufresne, A.: ‘Nanocellulose in biomedicine: current status and future prospect’, Eur. Polym. J., 2014, 59, pp. 302325.
    6. 6)
      • 28. Rensmo, H., Keis, K., Lindström, H., et al: ‘High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes’, J. Phys. Chem. B, 1997, 101, (14), pp. 25982601.
    7. 7)
      • 10. Boroumand Moghaddam, A., Namvar, F., Moniri, M., et al: ‘Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications’, Molecules, 2015, 20, (9), pp. 1654016565.
    8. 8)
      • 11. Baharara, J., Namvar, F., Ramezani, T., et al: ‘Green synthesis of silver nanoparticles using Achillea biebersteinii flower extract and its anti-angiogenic properties in the rat aortic ring model’, Molecules, 2014, 19, (4), pp. 46244634.
    9. 9)
      • 12. Ryter, S.W., Kim, H.P., Hoetzel, A., et al: ‘Mechanisms of cell death in oxidative stress’, Antioxid. Redox Signal., 2007, 9, (1), pp. 4989.
    10. 10)
      • 8. Moghaddam, A.B., Moniri, M., Azizi, S., et al: ‘Biosynthesis of ZnO nanoparticles by a new Pichia kudriavzevii yeast strain and evaluation of their antimicrobial and antioxidant activities’, Molecules, 2017, 22, (6), p. 872.
    11. 11)
      • 18. Iravani, S.: ‘Green synthesis of metal nanoparticles using plants’, Green Chem., 2011, 13, (10), pp. 26382650.
    12. 12)
      • 25. Jain, N., Bhargava, A., Tarafdar, J.C., et al: ‘A biomimetic approach towards synthesis of zinc oxide nanoparticles’, Appl. Microbiol. Biotechnol., 2013, 97, (2), pp. 859869.
    13. 13)
      • 13. Waris, G., Ahsan, H.: ‘Reactive oxygen species: role in the development of cancer and various chronic conditions’, J. Carcinog., 2006, 5, p. 14.
    14. 14)
      • 14. Sosa, V., Moliné, T., Somoza, R., et al: ‘Oxidative stress and cancer: an overview’, Ageing Res. Rev., 2013, 12, (1), pp. 376390.
    15. 15)
      • 33. Ismail, H.M.: ‘A thermoanalytic study of metal acetylacetonates’, J. Anal. Appl. Pyrolysis, 1991, 21, (3), pp. 315326.
    16. 16)
      • 4. Ruisinger, B., Schieberle, P.: ‘Characterization of the key aroma compounds in rape honey by means of the molecular sensory science concept’, J. Agric. Food Chem., 2012, 60, (17), pp. 41864194.
    17. 17)
      • 29. Haase, M., Weller, H., Henglein, A.: ‘Photochemistry and radiation chemistry of colloidal semiconductors. 23. Electron storage on zinc oxide particles and size quantization’, J. Phys. Chem., 1988, 92, (2), pp. 482487.
    18. 18)
      • 9. Azizi, S., Namvar, F., Mohamad, R., et al: ‘Facile biosynthesis and characterization of palm pollen stabilized ZnO nanoparticles’, Mater. Lett., 2015, 148, pp. 106109.
    19. 19)
      • 32. Saravanakkumar, D., Sivaranjani, S., Umamaheswari, M., et al: ‘Green synthesis of ZnO nanoparticles using Trachyspermum ammi seed extract for antibacterial investigation’, Der Pharma Chem., 2016, 8, (7), pp. 173180.
    20. 20)
      • 19. Hayashi, S., Nakamori, N., Kanamori, H.: ‘Generalized theory of average dielectric constant and its application to infrared absorption by ZnO small particles’, J. Phys. Soc. Jpn., 1979, 46, (1), pp. 176183.
    21. 21)
      • 16. Zamani, F., Izadi, E.: ‘Synthesis and characterization of sulfonated-phenylacetic acid coated Fe3O4 nanoparticles as a novel acid magnetic catalyst for Biginelli reaction’, Catal. Commun., 2013, 42, pp. 104108.
    22. 22)
      • 18. Iravani, S.: ‘Green synthesis of metal nanoparticles using plants’, Green Chem., 2011, 13, (10), pp. 26382650.
    23. 23)
      • 10. Boroumand Moghaddam, A., Namvar, F., Moniri, M., et al: ‘Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications’, Molecules, 2015, 20, (9), pp. 1654016565.
    24. 24)
      • 25. Jain, N., Bhargava, A., Tarafdar, J.C., et al: ‘A biomimetic approach towards synthesis of zinc oxide nanoparticles’, Appl. Microbiol. Biotechnol., 2013, 97, (2), pp. 859869.
    25. 25)
      • 30. Manokari, M., Shekhawat, M.S.: ‘Biosynthesis of zinc oxide nanoparticles from the aerial parts of Hibiscus rosa-sinensis L.’, no date.
    26. 26)
      • 33. Ismail, H.M.: ‘A thermoanalytic study of metal acetylacetonates’, J. Anal. Appl. Pyrolysis, 1991, 21, (3), pp. 315326.
    27. 27)
      • 12. Ryter, S.W., Kim, H.P., Hoetzel, A., et al: ‘Mechanisms of cell death in oxidative stress’, Antioxid. Redox Signal., 2007, 9, (1), pp. 4989.
    28. 28)
      • 26. Manokari, M., Shekhawat, M.S.: ‘Biogenesis of zinc oxide nanoparticles using aqueous extracts of Hemidesmus indicus (L.) R’, Br. Int. J. Res. Stud. Microbiol. Biotechnol., 2015, 1, (1), pp. 2024.
    29. 29)
      • 23. Lin, N., Dufresne, A.: ‘Nanocellulose in biomedicine: current status and future prospect’, Eur. Polym. J., 2014, 59, pp. 302325.
    30. 30)
      • 7. Abdal Dayem, A., Hossain, M.K., Lee, S.B., et al: ‘The role of reactive oxygen Species (ROS) in the biological activities of metallic nanoparticles’, Int. J. Mol. Sci., 2017, 18, (1), p. 120.
    31. 31)
      • 3. Campbell, L., Rempel, C.B., Wanasundara, J.P.D.: ‘Canola/rapeseed protein: future opportunities and directions – workshop proceedings of IRC 2015’ (Multidisciplinary Digital Publishing Institute, Switzerland, 2016).
    32. 32)
      • 5. Chen, X., Dai, G., Ren, Z., et al: ‘Identification of dietetically absorbed rapeseed (Brassica campestris L.) bee pollen microRNAs in serum of mice’, Biomed. Res. Int., 2016, 2016, pp. 15.
    33. 33)
      • 27. Salam, H.A., Rajiv, P., Kamaraj, M., et al: ‘Plants: green route for nanoparticle synthesis’, Int. Res. J. Biol. Sci., 2012, 1, (5), pp. 8590.
    34. 34)
      • 4. Ruisinger, B., Schieberle, P.: ‘Characterization of the key aroma compounds in rape honey by means of the molecular sensory science concept’, J. Agric. Food Chem., 2012, 60, (17), pp. 41864194.
    35. 35)
      • 14. Sosa, V., Moliné, T., Somoza, R., et al: ‘Oxidative stress and cancer: an overview’, Ageing Res. Rev., 2013, 12, (1), pp. 376390.
    36. 36)
      • 22. Heller, R.B., McGannon, J., Weber, A.H.: ‘Precision determination of the lattice constants of zinc oxide’, J. Appl. Phys., 1950, 21, (12), pp. 12831284.
    37. 37)
      • 8. Moghaddam, A.B., Moniri, M., Azizi, S., et al: ‘Biosynthesis of ZnO nanoparticles by a new Pichia kudriavzevii yeast strain and evaluation of their antimicrobial and antioxidant activities’, Molecules, 2017, 22, (6), p. 872.
    38. 38)
      • 1. Fu, D., Jiang, L., Mason, A.S., et al: ‘Research progress and strategies for multifunctional rapeseed: a case study of China’, J. Integr. Agric., 2016, 15, (8), pp. 16731684.
    39. 39)
      • 28. Rensmo, H., Keis, K., Lindström, H., et al: ‘High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes’, J. Phys. Chem. B, 1997, 101, (14), pp. 25982601.
    40. 40)
      • 36. Wahab, R., Kim, Y.-S., Mishra, A., et al: ‘Formation of ZnO micro-flowers prepared via solution process and their antibacterial activity’, Nanoscale Res. Lett., 2010, 5, (10), p. 1675.
    41. 41)
      • 24. Agarwal, H., Venkat Kumar, S., Rajesh Kumar, S.: ‘A review on green synthesis of zinc oxide nanoparticles – an eco-friendly approach’, Resour. Technol., 2017, 3, (4), pp. 406413.
    42. 42)
      • 11. Baharara, J., Namvar, F., Ramezani, T., et al: ‘Green synthesis of silver nanoparticles using Achillea biebersteinii flower extract and its anti-angiogenic properties in the rat aortic ring model’, Molecules, 2014, 19, (4), pp. 46244634.
    43. 43)
      • 39. Murali, M., Mahendra, C., Rajashekar, N., et al: ‘Antibacterial and antioxidant properties of biosynthesized zinc oxide nanoparticles from Ceropegia candelabrum L. – an endemic species’, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 2017, 179, pp. 104109.
    44. 44)
      • 6. Malhotra, S.P.K., Mandal, T.K.: ‘Biomedical applications of zinc oxide nanomaterials in cancer treatment: a review’, SCIREA J. Chem., 2016, 1, (2), pp. 6789.
    45. 45)
      • 17. Manokari, M., Ravindran, C.P., Shekhawat, M.S.: ‘Production of zinc oxide nanoparticles using aqueous extracts of a medicinal plant Micrococca mercurialis (L.) benth’, World Sci. News, 2016, 30, pp. 117128.
    46. 46)
      • 37. Namvar, F., Rahman, H.S., Mohamad, R., et al: ‘Cytotoxic effects of biosynthesized zinc oxide nanoparticles on murine cell lines’, Evidence-Based Complement. Altern. Med., 2015, 2015.
    47. 47)
      • 34. Zuas, O., Budiman, H., Hamim, N.: ‘Synthesis of ZnO nanoparticles for microwave induced rapid catalytic decolorization of Congo red dye’, Adv. Mater. Lett., 2013, 4, (9), pp. 662667.
    48. 48)
      • 20. Anžlovar, A., Orel, Z.C., Kogej, K., et al: ‘Polyol-mediated synthesis of zinc oxide nanorods and nanocomposites with poly (methyl methacrylate)’, J. Nanomater., 2012, 2012, p. 31.
    49. 49)
      • 38. Saddick, S., Afifi, M., Zinada, O.A.A.: ‘Effect of zinc nanoparticles on oxidative stress-related genes and antioxidant enzymes activity in the brain of Oreochromis niloticus and Tilapia zillii’, Saudi J. Biol. Sci., 2017, 24, (7), pp. 16721678.
    50. 50)
      • 15. Maritim, A.C., Sanders, R.A., Watkins, J.B.III: ‘Diabetes, oxidative stress, and antioxidants: a review’, J. Biochem. Mol. Toxicol., 2003, 17, (1), pp. 2438.
    51. 51)
      • 2. Chen, L.-F., Ma, S.-X., Lu, S., et al: ‘Biotemplated synthesis of three-dimensional porous MnO/CN nanocomposites from renewable rapeseed pollen: an anode material for lithium-ion batteries’, Nano Res., 2017, 10, (1), pp. 111.
    52. 52)
      • 9. Azizi, S., Namvar, F., Mohamad, R., et al: ‘Facile biosynthesis and characterization of palm pollen stabilized ZnO nanoparticles’, Mater. Lett., 2015, 148, pp. 106109.
    53. 53)
      • 13. Waris, G., Ahsan, H.: ‘Reactive oxygen species: role in the development of cancer and various chronic conditions’, J. Carcinog., 2006, 5, p. 14.
    54. 54)
      • 21. Znaidi, L., Illia, G.S., Benyahia, S., et al: ‘Oriented ZnO thin films synthesis by sol–gel process for laser application’, Thin Solid Films, 2003, 428, (1–2), pp. 257262.
    55. 55)
      • 35. Mandak, E., Zhu, D., Godany, T.A., et al: ‘Fourier transform infrared spectroscopy and Raman spectroscopy as tools for identification of steryl ferulates’, J. Agric. Food Chem., 2013, 61, (10), pp. 24462452.
    56. 56)
      • 31. Namvar, F., Azizi, S., Rahman, H.S., et al: ‘Green synthesis, characterization, and anticancer activity of hyaluronan/zinc oxide nanocomposite’, Onco Targets Ther., 2016, 9, p. 4549.
    57. 57)
      • 29. Haase, M., Weller, H., Henglein, A.: ‘Photochemistry and radiation chemistry of colloidal semiconductors. 23. Electron storage on zinc oxide particles and size quantization’, J. Phys. Chem., 1988, 92, (2), pp. 482487.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5164
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5164
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading