Bio-green synthesis ZnO-NPs in Brassica napus pollen extract: biosynthesis, antioxidant, cytotoxicity and pro-apoptotic properties

Bio-green synthesis ZnO-NPs in Brassica napus pollen extract: biosynthesis, antioxidant, cytotoxicity and pro-apoptotic properties

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The bio-green methods of synthesis nanoparticles (NPs) have advantages over chemo-physical procedures due to cost-effective and ecofriendly products. The goal of current investigation is biosynthesis of zinc oxide NPs (ZnO-NPs) and evaluation of their biological assessment. Water extract of Brassica napus pollen [rapeseed (RP)] prepared and used for the synthesis of ZnO-NPs and synthesised ZnO-NP characterised using ultraviolet–visible, X-ray diffraction, Fourier-transform infrared spectroscopy, field emission scanning electron microscope and transmission electron microscope. Antioxidant properties of ZnO-NPs, cytotoxic and pro-apoptotic potentials of NPs were also evaluated. The results showed that ZnO-NPs have a hexagonal shape with 26 nm size. ZnO-NPs synthesised in RP (RP/ZnO-NPs) exhibited the good antioxidant potential compared with the butylated hydroxyanisole as a positive control. These NPs showed the cytotoxic effects against breast cancer cells (M.D. Anderson-Metastasis Breast cancer (MDA-MB)) with IC50 about 1, 6 and 6 μg/ml after 24, 48 and 72 h of exposure, respectively. RP/ZnO-NPs were found effective in increasing the expression of catalase enzyme, the enzyme involved in antioxidants properties of the cells. Bio-green synthesised RP/ZnO-NPs showed antioxidant and cytotoxic properties. The results of the present study support the advantages of using the bio-green procedure for the synthesis of NPs as an antioxidant and as anti-cancer agents.


    1. 1)
      • 1. Fu, D., Jiang, L., Mason, A.S., et al: ‘Research progress and strategies for multifunctional rapeseed: a case study of China’, J. Integr. Agric., 2016, 15, (8), pp. 16731684.
    2. 2)
      • 2. Chen, L.-F., Ma, S.-X., Lu, S., et al: ‘Biotemplated synthesis of three-dimensional porous MnO/CN nanocomposites from renewable rapeseed pollen: an anode material for lithium-ion batteries’, Nano Res., 2017, 10, (1), pp. 111.
    3. 3)
      • 3. Campbell, L., Rempel, C.B., Wanasundara, J.P.D.: ‘Canola/rapeseed protein: future opportunities and directions – workshop proceedings of IRC 2015’ (Multidisciplinary Digital Publishing Institute, Switzerland, 2016).
    4. 4)
      • 4. Ruisinger, B., Schieberle, P.: ‘Characterization of the key aroma compounds in rape honey by means of the molecular sensory science concept’, J. Agric. Food Chem., 2012, 60, (17), pp. 41864194.
    5. 5)
      • 5. Chen, X., Dai, G., Ren, Z., et al: ‘Identification of dietetically absorbed rapeseed (Brassica campestris L.) bee pollen microRNAs in serum of mice’, Biomed. Res. Int., 2016, 2016, pp. 15.
    6. 6)
      • 6. Malhotra, S.P.K., Mandal, T.K.: ‘Biomedical applications of zinc oxide nanomaterials in cancer treatment: a review’, SCIREA J. Chem., 2016, 1, (2), pp. 6789.
    7. 7)
      • 7. Abdal Dayem, A., Hossain, M.K., Lee, S.B., et al: ‘The role of reactive oxygen Species (ROS) in the biological activities of metallic nanoparticles’, Int. J. Mol. Sci., 2017, 18, (1), p. 120.
    8. 8)
      • 8. Moghaddam, A.B., Moniri, M., Azizi, S., et al: ‘Biosynthesis of ZnO nanoparticles by a new Pichia kudriavzevii yeast strain and evaluation of their antimicrobial and antioxidant activities’, Molecules, 2017, 22, (6), p. 872.
    9. 9)
      • 9. Azizi, S., Namvar, F., Mohamad, R., et al: ‘Facile biosynthesis and characterization of palm pollen stabilized ZnO nanoparticles’, Mater. Lett., 2015, 148, pp. 106109.
    10. 10)
      • 10. Boroumand Moghaddam, A., Namvar, F., Moniri, M., et al: ‘Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications’, Molecules, 2015, 20, (9), pp. 1654016565.
    11. 11)
      • 11. Baharara, J., Namvar, F., Ramezani, T., et al: ‘Green synthesis of silver nanoparticles using Achillea biebersteinii flower extract and its anti-angiogenic properties in the rat aortic ring model’, Molecules, 2014, 19, (4), pp. 46244634.
    12. 12)
      • 12. Ryter, S.W., Kim, H.P., Hoetzel, A., et al: ‘Mechanisms of cell death in oxidative stress’, Antioxid. Redox Signal., 2007, 9, (1), pp. 4989.
    13. 13)
      • 13. Waris, G., Ahsan, H.: ‘Reactive oxygen species: role in the development of cancer and various chronic conditions’, J. Carcinog., 2006, 5, p. 14.
    14. 14)
      • 14. Sosa, V., Moliné, T., Somoza, R., et al: ‘Oxidative stress and cancer: an overview’, Ageing Res. Rev., 2013, 12, (1), pp. 376390.
    15. 15)
      • 15. Maritim, A.C., Sanders, R.A., Watkins, J.B.III: ‘Diabetes, oxidative stress, and antioxidants: a review’, J. Biochem. Mol. Toxicol., 2003, 17, (1), pp. 2438.
    16. 16)
      • 16. Zamani, F., Izadi, E.: ‘Synthesis and characterization of sulfonated-phenylacetic acid coated Fe3O4 nanoparticles as a novel acid magnetic catalyst for Biginelli reaction’, Catal. Commun., 2013, 42, pp. 104108.
    17. 17)
      • 17. Manokari, M., Ravindran, C.P., Shekhawat, M.S.: ‘Production of zinc oxide nanoparticles using aqueous extracts of a medicinal plant Micrococca mercurialis (L.) benth’, World Sci. News, 2016, 30, pp. 117128.
    18. 18)
      • 18. Iravani, S.: ‘Green synthesis of metal nanoparticles using plants’, Green Chem., 2011, 13, (10), pp. 26382650.
    19. 19)
      • 19. Hayashi, S., Nakamori, N., Kanamori, H.: ‘Generalized theory of average dielectric constant and its application to infrared absorption by ZnO small particles’, J. Phys. Soc. Jpn., 1979, 46, (1), pp. 176183.
    20. 20)
      • 20. Anžlovar, A., Orel, Z.C., Kogej, K., et al: ‘Polyol-mediated synthesis of zinc oxide nanorods and nanocomposites with poly (methyl methacrylate)’, J. Nanomater., 2012, 2012, p. 31.
    21. 21)
      • 21. Znaidi, L., Illia, G.S., Benyahia, S., et al: ‘Oriented ZnO thin films synthesis by sol–gel process for laser application’, Thin Solid Films, 2003, 428, (1–2), pp. 257262.
    22. 22)
      • 22. Heller, R.B., McGannon, J., Weber, A.H.: ‘Precision determination of the lattice constants of zinc oxide’, J. Appl. Phys., 1950, 21, (12), pp. 12831284.
    23. 23)
      • 23. Lin, N., Dufresne, A.: ‘Nanocellulose in biomedicine: current status and future prospect’, Eur. Polym. J., 2014, 59, pp. 302325.
    24. 24)
      • 24. Agarwal, H., Venkat Kumar, S., Rajesh Kumar, S.: ‘A review on green synthesis of zinc oxide nanoparticles – an eco-friendly approach’, Resour. Technol., 2017, 3, (4), pp. 406413.
    25. 25)
      • 25. Jain, N., Bhargava, A., Tarafdar, J.C., et al: ‘A biomimetic approach towards synthesis of zinc oxide nanoparticles’, Appl. Microbiol. Biotechnol., 2013, 97, (2), pp. 859869.
    26. 26)
      • 26. Manokari, M., Shekhawat, M.S.: ‘Biogenesis of zinc oxide nanoparticles using aqueous extracts of Hemidesmus indicus (L.) R’, Br. Int. J. Res. Stud. Microbiol. Biotechnol., 2015, 1, (1), pp. 2024.
    27. 27)
      • 27. Salam, H.A., Rajiv, P., Kamaraj, M., et al: ‘Plants: green route for nanoparticle synthesis’, Int. Res. J. Biol. Sci., 2012, 1, (5), pp. 8590.
    28. 28)
      • 28. Rensmo, H., Keis, K., Lindström, H., et al: ‘High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes’, J. Phys. Chem. B, 1997, 101, (14), pp. 25982601.
    29. 29)
      • 29. Haase, M., Weller, H., Henglein, A.: ‘Photochemistry and radiation chemistry of colloidal semiconductors. 23. Electron storage on zinc oxide particles and size quantization’, J. Phys. Chem., 1988, 92, (2), pp. 482487.
    30. 30)
      • 30. Manokari, M., Shekhawat, M.S.: ‘Biosynthesis of zinc oxide nanoparticles from the aerial parts of Hibiscus rosa-sinensis L.’, no date.
    31. 31)
      • 31. Namvar, F., Azizi, S., Rahman, H.S., et al: ‘Green synthesis, characterization, and anticancer activity of hyaluronan/zinc oxide nanocomposite’, Onco Targets Ther., 2016, 9, p. 4549.
    32. 32)
      • 32. Saravanakkumar, D., Sivaranjani, S., Umamaheswari, M., et al: ‘Green synthesis of ZnO nanoparticles using Trachyspermum ammi seed extract for antibacterial investigation’, Der Pharma Chem., 2016, 8, (7), pp. 173180.
    33. 33)
      • 33. Ismail, H.M.: ‘A thermoanalytic study of metal acetylacetonates’, J. Anal. Appl. Pyrolysis, 1991, 21, (3), pp. 315326.
    34. 34)
      • 34. Zuas, O., Budiman, H., Hamim, N.: ‘Synthesis of ZnO nanoparticles for microwave induced rapid catalytic decolorization of Congo red dye’, Adv. Mater. Lett., 2013, 4, (9), pp. 662667.
    35. 35)
      • 35. Mandak, E., Zhu, D., Godany, T.A., et al: ‘Fourier transform infrared spectroscopy and Raman spectroscopy as tools for identification of steryl ferulates’, J. Agric. Food Chem., 2013, 61, (10), pp. 24462452.
    36. 36)
      • 36. Wahab, R., Kim, Y.-S., Mishra, A., et al: ‘Formation of ZnO micro-flowers prepared via solution process and their antibacterial activity’, Nanoscale Res. Lett., 2010, 5, (10), p. 1675.
    37. 37)
      • 37. Namvar, F., Rahman, H.S., Mohamad, R., et al: ‘Cytotoxic effects of biosynthesized zinc oxide nanoparticles on murine cell lines’, Evidence-Based Complement. Altern. Med., 2015, 2015.
    38. 38)
      • 38. Saddick, S., Afifi, M., Zinada, O.A.A.: ‘Effect of zinc nanoparticles on oxidative stress-related genes and antioxidant enzymes activity in the brain of Oreochromis niloticus and Tilapia zillii’, Saudi J. Biol. Sci., 2017, 24, (7), pp. 16721678.
    39. 39)
      • 39. Murali, M., Mahendra, C., Rajashekar, N., et al: ‘Antibacterial and antioxidant properties of biosynthesized zinc oxide nanoparticles from Ceropegia candelabrum L. – an endemic species’, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 2017, 179, pp. 104109.

Related content

This is a required field
Please enter a valid email address