access icon free Gold nanoparticles decorated reduced graphene oxide nanolabel for voltammetric immunosensing

This study describes the development and testing of a simple and novel enzyme-free nanolabel for the detection and signal amplification in a sandwich immunoassay. Gold nanoparticles decorated reduced graphene oxide (rGOAu) was used as the nanolabel for the quantitative detection of human immunoglobulin G (HIgG). The rGOAu nanolabel was synthesised by one pot chemical reduction of graphene oxide and chloroauric acid using sodium borohydride. The pseudo-peroxidase behaviour of rGOAu makes the nanolabel unique from other existing labels. The immunosensing platform was fabricated using self-assembled monolayers of 11-mercaptoundecanoic acid (11-MUDA) on a gold disc electrode. The covalent immobilisation of antibody was achieved through the bonding of the carboxyl group of 11-MUDA and the amino group of the antibody using chemical linkers [1-ethyl-3-(3-dimethylaminopropyl)carbodiimide] and N-hydroxysuccinimide. The fabricated immunosensor exhibited a linear range that included HIgG concentrations of 62.5–500 ng ml−1. The sensor was also used for the testing of HIgG in the blood sample.

Inspec keywords: biochemistry; self-assembly; electrochemical sensors; nanofabrication; monolayers; biosensors; nanomedicine; blood; gold; nanoparticles; nanosensors; graphene; proteins; voltammetry (chemical analysis); reduction (chemical); molecular biophysics; chemical sensors; oxidation

Other keywords: N-hydroxysuccinimide; enzyme-free nanolabel; chloroauric acid; quantitative HIgG detection; pseudo-peroxidase behaviour; HIgG concentrations; gold nanoparticles; Au-CO; carboxyl group bonding; voltammetric immunosensing; blood sample; signal amplification; 11-mercaptoundecanoic acid; gold disc electrode; chemical linkers; reduced graphene oxide nanolabel; rGOAu nanolabel; sandwich immunoassay; immunosensor; human immunoglobulin G; sodium borohydride; 11-MUDA; 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide]; self-assembled monolayers; covalent antibody immobilisation; one pot chemical reduction

Subjects: Chemical sensors; Methods of nanofabrication and processing; Nanotechnology applications in biomedicine; Electrochemistry and electrophoresis; Microsensors and nanosensors; Electrochemical analytical methods; Physical chemistry of biomolecular solutions and condensed states; Biosensors; Chemical sensors; Biosensors; Biomolecular interactions, charge transfer complexes; Biomedical measurement and imaging

References

    1. 1)
      • 11. Tang, D., Yuan, R., Chai, Y.: ‘Ultrasensitive electrochemical immunosensor for clinical immunoassay using thionine-doped magnetic gold nanospheres as labels and horseradish peroxidase as enhancer’, Anal. Chem., 2008, 80, (5), pp. 15821588.
    2. 2)
      • 22. Goncalves, G., Marques, P.A., Granadeiro, C.M., et al: ‘Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth’, Chem. Mater., 2009, 21, (20), pp. 47964802.
    3. 3)
      • 24. Sarathy, K.V., Raina, G., Yadav, R., et al: ‘Thiol-derivatized nanocrystalline arrays of gold, silver, and platinum’, J. Phys. Chem. B, 1997, 101, (48), pp. 98769880.
    4. 4)
      • 5. Slagle, K.M., Ghosn, S.J.: ‘Immunoassays: tools for sensitive, specific, and accurate test results’, Lab. Med., 2015, 27, (3), pp. 177183.
    5. 5)
      • 4. Pei, X., Zhang, B., Tang, J., et al: ‘Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: a review’, Anal. Chim. Acta, 2013, 758, pp. 118.
    6. 6)
      • 6. Kato, H., Torigoe, T.: ‘Radioimmunoassay for tumor antigen of human cervical squamous cell carcinoma’, Cancer, 1977, 40, (4), pp. 16211628.
    7. 7)
      • 7. Yang, M., Kostov, Y., Bruck, H.A., et al: ‘Gold nanoparticle-based enhanced chemiluminescence immunosensor for detection of staphylococcal enterotoxin B (Seb) in food’, Int. J. Food Microbiol., 2009, 133, (3), pp. 265271.
    8. 8)
      • 26. Shahriary, L., Athawale, A.A.: ‘Graphene oxide synthesized by using modified Hummers approach’, Int. J. Renew. Energy Environ. Eng., 2014, 2, (1), pp. 5863.
    9. 9)
      • 18. Pingarrón, J.M., Yáñez-Sedeño, P., González-Cortés, A.: ‘Gold nanoparticle-based electrochemical biosensors’, Electrochim. Acta, 2008, 53, (19), pp. 58485866.
    10. 10)
      • 14. Giannetto, M., Elviri, L., Careri, M., et al: ‘A voltammetric immunosensor based on nanobiocomposite materials for the determination of alpha-fetoprotein in serum’, Biosens. Bioelectron., 2011, 26, (5), pp. 22322236.
    11. 11)
      • 13. Tang, D., Niessner, R., Knopp, D.: ‘Flow-injection electrochemical immunosensor for the detection of Human IgG based on glucose oxidase-derivated biomimetic interface’, Biosens. Bioelectron., 2009, 24, (7), pp. 21252130.
    12. 12)
      • 21. Muszynski, R., Seger, B., Kamat, P.V.: ‘Decorating graphene sheets with gold nanoparticles’, J. Phys. Chem. C, 2008, 112, (14), pp. 52635266.
    13. 13)
      • 16. Jiang, W., Yuan, R., Chai, Y.-Q., et al: ‘Amperometric immunosensor based on multiwalled carbon nanotubes/Prussian blue/nanogold-modified electrode for determination of Α-fetoprotein’, Anal. Biochem., 2010, 407, (1), pp. 6571.
    14. 14)
      • 25. Subramanian, A., Irudayaraj, J., Ryan, T.: ‘A mixed self-assembled monolayer-based surface plasmon immunosensor for detection of E. coli O157:H7’, Biosens. Bioelectron., 2006, 21, (7), pp. 9981006.
    15. 15)
      • 23. Bain, C.D., Troughton, E.B., Tao, Y.T., et al: ‘Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold’, J. Am. Chem. Soc., 1989, 111, (1), pp. 321335.
    16. 16)
      • 17. Wang, J., Xu, D., Kawde, A.-N., et al: ‘Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization’, Anal. Chem., 2001, 73, (22), pp. 55765581.
    17. 17)
      • 20. Berbeć, S., Żołądek, S., Jabłońska, A., et al: ‘Electrochemically reduced graphene oxide on gold nanoparticles modified with a polyoxomolybdate film. Highly sensitive non-enzymatic electrochemical detection of H2O2’, Sens. Actuators, B, 2018, 258, pp. 745756.
    18. 18)
      • 19. Guo, S., Wen, D., Zhai, Y., et al: ‘Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing’, ACS Nano, 2010, 4, (7), pp. 39593968.
    19. 19)
      • 9. Dai, Z., Yan, F., Chen, J., et al: ‘Reagentless amperometric immunosensors based on direct electrochemistry of horseradish peroxidase for determination of carcinoma antigen-125’, Anal. Chem., 2003, 75, (20), pp. 54295434.
    20. 20)
      • 2. Haji-Hashemi, H., Norouzi, P., Safarnejad, M.R., et al: ‘Label-free electrochemical immunosensor for direct detection of citrus Tristeza virus using modified gold electrode’, Sens. Actuators, B, 2017, 244, pp. 211216.
    21. 21)
      • 8. Retnakumari, A., Setua, S., Menon, D., et al: ‘Molecular-receptor-specific, non-toxic, near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging’, Nanotechnology, 2009, 21, (5), p. 055103.
    22. 22)
      • 3. Mandli, J., Attar, A., Ennaji, M.M., et al: ‘Indirect competitive electrochemical immunosensor for hepatitis a virus antigen detection’, J. Electroanal. Chem., 2017, 799, pp. 213221.
    23. 23)
      • 27. Yang, Y.-C., Dong, S.-W., Shen, T., et al: ‘Amplified immunosensing based on ionic liquid-doped chitosan film as a matrix and Au nanoparticle decorated graphene nanosheets as labels’, Electrochim. Acta, 2011, 56, (17), pp. 60216025.
    24. 24)
      • 15. Li, H., Wei, Q., He, J., et al: ‘Electrochemical immunosensors for cancer biomarker with signal amplification based on ferrocene functionalized iron oxide nanoparticles’, Biosens. Bioelectron., 2011, 26, (8), pp. 35903595.
    25. 25)
      • 10. Chikkaveeraiah, B.V., Bhirde, A.A., Morgan, N.Y., et al: ‘Electrochemical immunosensors for detection of cancer protein biomarkers’, ACS Nano, 2012, 6, (8), pp. 65466561.
    26. 26)
      • 12. Yin, Z., Liu, Y., Jiang, L.-P., et al: ‘Electrochemical immunosensor of tumor necrosis factor Α based on alkaline phosphatase functionalized nanospheres’, Biosens. Bioelectron., 2011, 26, (5), pp. 18901894.
    27. 27)
      • 1. Darwish, I.A.: ‘Immunoassay methods and their applications in pharmaceutical analysis: basic methodology and recent advances’, Int. J. Biomed. Sci., 2006, 2, (3), p. 217.
    28. 28)
      • 28. Dhara, K., Ramachandran, T., Nair, B.G., et al: ‘Au nanoparticles decorated reduced graphene oxide for the fabrication of disposable nonenzymatic hydrogen peroxide sensor’, J. Electroanal. Chem., 2016, 764, pp. 6470.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5150
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5150
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading