http://iet.metastore.ingenta.com
1887

Gold nanoparticles decorated reduced graphene oxide nanolabel for voltammetric immunosensing

Gold nanoparticles decorated reduced graphene oxide nanolabel for voltammetric immunosensing

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study describes the development and testing of a simple and novel enzyme-free nanolabel for the detection and signal amplification in a sandwich immunoassay. Gold nanoparticles decorated reduced graphene oxide (rGOAu) was used as the nanolabel for the quantitative detection of human immunoglobulin G (HIgG). The rGOAu nanolabel was synthesised by one pot chemical reduction of graphene oxide and chloroauric acid using sodium borohydride. The pseudo-peroxidase behaviour of rGOAu makes the nanolabel unique from other existing labels. The immunosensing platform was fabricated using self-assembled monolayers of 11-mercaptoundecanoic acid (11-MUDA) on a gold disc electrode. The covalent immobilisation of antibody was achieved through the bonding of the carboxyl group of 11-MUDA and the amino group of the antibody using chemical linkers [1-ethyl-3-(3-dimethylaminopropyl)carbodiimide] and N-hydroxysuccinimide. The fabricated immunosensor exhibited a linear range that included HIgG concentrations of 62.5–500 ng ml−1. The sensor was also used for the testing of HIgG in the blood sample.

References

    1. 1)
      • 1. Darwish, I.A.: ‘Immunoassay methods and their applications in pharmaceutical analysis: basic methodology and recent advances’, Int. J. Biomed. Sci., 2006, 2, (3), p. 217.
    2. 2)
      • 2. Haji-Hashemi, H., Norouzi, P., Safarnejad, M.R., et al: ‘Label-free electrochemical immunosensor for direct detection of citrus Tristeza virus using modified gold electrode’, Sens. Actuators, B, 2017, 244, pp. 211216.
    3. 3)
      • 3. Mandli, J., Attar, A., Ennaji, M.M., et al: ‘Indirect competitive electrochemical immunosensor for hepatitis a virus antigen detection’, J. Electroanal. Chem., 2017, 799, pp. 213221.
    4. 4)
      • 4. Pei, X., Zhang, B., Tang, J., et al: ‘Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: a review’, Anal. Chim. Acta, 2013, 758, pp. 118.
    5. 5)
      • 5. Slagle, K.M., Ghosn, S.J.: ‘Immunoassays: tools for sensitive, specific, and accurate test results’, Lab. Med., 2015, 27, (3), pp. 177183.
    6. 6)
      • 6. Kato, H., Torigoe, T.: ‘Radioimmunoassay for tumor antigen of human cervical squamous cell carcinoma’, Cancer, 1977, 40, (4), pp. 16211628.
    7. 7)
      • 7. Yang, M., Kostov, Y., Bruck, H.A., et al: ‘Gold nanoparticle-based enhanced chemiluminescence immunosensor for detection of staphylococcal enterotoxin B (Seb) in food’, Int. J. Food Microbiol., 2009, 133, (3), pp. 265271.
    8. 8)
      • 8. Retnakumari, A., Setua, S., Menon, D., et al: ‘Molecular-receptor-specific, non-toxic, near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging’, Nanotechnology, 2009, 21, (5), p. 055103.
    9. 9)
      • 9. Dai, Z., Yan, F., Chen, J., et al: ‘Reagentless amperometric immunosensors based on direct electrochemistry of horseradish peroxidase for determination of carcinoma antigen-125’, Anal. Chem., 2003, 75, (20), pp. 54295434.
    10. 10)
      • 10. Chikkaveeraiah, B.V., Bhirde, A.A., Morgan, N.Y., et al: ‘Electrochemical immunosensors for detection of cancer protein biomarkers’, ACS Nano, 2012, 6, (8), pp. 65466561.
    11. 11)
      • 11. Tang, D., Yuan, R., Chai, Y.: ‘Ultrasensitive electrochemical immunosensor for clinical immunoassay using thionine-doped magnetic gold nanospheres as labels and horseradish peroxidase as enhancer’, Anal. Chem., 2008, 80, (5), pp. 15821588.
    12. 12)
      • 12. Yin, Z., Liu, Y., Jiang, L.-P., et al: ‘Electrochemical immunosensor of tumor necrosis factor Α based on alkaline phosphatase functionalized nanospheres’, Biosens. Bioelectron., 2011, 26, (5), pp. 18901894.
    13. 13)
      • 13. Tang, D., Niessner, R., Knopp, D.: ‘Flow-injection electrochemical immunosensor for the detection of Human IgG based on glucose oxidase-derivated biomimetic interface’, Biosens. Bioelectron., 2009, 24, (7), pp. 21252130.
    14. 14)
      • 14. Giannetto, M., Elviri, L., Careri, M., et al: ‘A voltammetric immunosensor based on nanobiocomposite materials for the determination of alpha-fetoprotein in serum’, Biosens. Bioelectron., 2011, 26, (5), pp. 22322236.
    15. 15)
      • 15. Li, H., Wei, Q., He, J., et al: ‘Electrochemical immunosensors for cancer biomarker with signal amplification based on ferrocene functionalized iron oxide nanoparticles’, Biosens. Bioelectron., 2011, 26, (8), pp. 35903595.
    16. 16)
      • 16. Jiang, W., Yuan, R., Chai, Y.-Q., et al: ‘Amperometric immunosensor based on multiwalled carbon nanotubes/Prussian blue/nanogold-modified electrode for determination of Α-fetoprotein’, Anal. Biochem., 2010, 407, (1), pp. 6571.
    17. 17)
      • 17. Wang, J., Xu, D., Kawde, A.-N., et al: ‘Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization’, Anal. Chem., 2001, 73, (22), pp. 55765581.
    18. 18)
      • 18. Pingarrón, J.M., Yáñez-Sedeño, P., González-Cortés, A.: ‘Gold nanoparticle-based electrochemical biosensors’, Electrochim. Acta, 2008, 53, (19), pp. 58485866.
    19. 19)
      • 19. Guo, S., Wen, D., Zhai, Y., et al: ‘Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing’, ACS Nano, 2010, 4, (7), pp. 39593968.
    20. 20)
      • 20. Berbeć, S., Żołądek, S., Jabłońska, A., et al: ‘Electrochemically reduced graphene oxide on gold nanoparticles modified with a polyoxomolybdate film. Highly sensitive non-enzymatic electrochemical detection of H2O2’, Sens. Actuators, B, 2018, 258, pp. 745756.
    21. 21)
      • 21. Muszynski, R., Seger, B., Kamat, P.V.: ‘Decorating graphene sheets with gold nanoparticles’, J. Phys. Chem. C, 2008, 112, (14), pp. 52635266.
    22. 22)
      • 22. Goncalves, G., Marques, P.A., Granadeiro, C.M., et al: ‘Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth’, Chem. Mater., 2009, 21, (20), pp. 47964802.
    23. 23)
      • 23. Bain, C.D., Troughton, E.B., Tao, Y.T., et al: ‘Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold’, J. Am. Chem. Soc., 1989, 111, (1), pp. 321335.
    24. 24)
      • 24. Sarathy, K.V., Raina, G., Yadav, R., et al: ‘Thiol-derivatized nanocrystalline arrays of gold, silver, and platinum’, J. Phys. Chem. B, 1997, 101, (48), pp. 98769880.
    25. 25)
      • 25. Subramanian, A., Irudayaraj, J., Ryan, T.: ‘A mixed self-assembled monolayer-based surface plasmon immunosensor for detection of E. coli O157:H7’, Biosens. Bioelectron., 2006, 21, (7), pp. 9981006.
    26. 26)
      • 26. Shahriary, L., Athawale, A.A.: ‘Graphene oxide synthesized by using modified Hummers approach’, Int. J. Renew. Energy Environ. Eng., 2014, 2, (1), pp. 5863.
    27. 27)
      • 27. Yang, Y.-C., Dong, S.-W., Shen, T., et al: ‘Amplified immunosensing based on ionic liquid-doped chitosan film as a matrix and Au nanoparticle decorated graphene nanosheets as labels’, Electrochim. Acta, 2011, 56, (17), pp. 60216025.
    28. 28)
      • 28. Dhara, K., Ramachandran, T., Nair, B.G., et al: ‘Au nanoparticles decorated reduced graphene oxide for the fabrication of disposable nonenzymatic hydrogen peroxide sensor’, J. Electroanal. Chem., 2016, 764, pp. 6470.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5150
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5150
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address