Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Fabrication and characterisation of silver nanoparticles using bract extract of Musa paradisiaca for its synergistic combating effect on phytopathogens, free radical scavenging activity, and catalytic efficiency

This work explores the rapid synthesis of silver nanoparticles (AgNPs) from Musa paradisiaca (M. paradisiaca) bract extract. The bio-reduction of Ag+ ion was recorded using ultraviolet–visible spectroscopy by a surface plasmon resonance extinction peak with an absorbance at 420 nm. The phytoconstituents responsible for the reduction of AgNPs was probed using Fourier transform infrared spectroscopy. The X-ray diffraction pattern confirmed the formation of crystalline AgNPs that were analogous to selected area electron diffraction patterns. Morphological studies showed that the obtained AgNPs were monodispersed with an average size of 15 nm. The biologically synthesised AgNPs showed higher obstruction against tested phytopathogens. The synthesised AgNPs exhibited higher inhibitory zone against fungal pathogen Alternaria alternata and bacterial pathogen Pseudomonas syringae. Free radical scavenging potential of AgNPs was investigated using 1,1-diphenyl-2-picryl hydroxyl and 2,2-azinobis (3-ethylbenzothiazoline)-6-sulphonic acid assays which revealed that the synthesised AgNPs act as a potent radical scavenger. The catalytic efficiency of the synthesised AgNPs was investigated for azo dyes, methyl orange (MO), methylene blue (MB) and reduction of o-nitrophenol to o-aminophenol. The results portrayed that AgNPs act as an effective nanocatalyst to degrade MO to hydrazine derivatives, MB to leucomethylene blue, and o-nitro phenol to o-amino phenol

References

    1. 1)
      • 20. Saha, N., Trivedi, P., Dutta Gupta, S.: ‘Surface plasmon resonance (spr) based optimization of biosynthesis of silver nanoparticles from rhizome extract of CurculigoorchioidesGaertn. and its antioxidant potential’, J. Clust. Sci., 2016, 27, (6), pp. 18931912.
    2. 2)
      • 33. Baranwal, A., Mahato, K., Srivastava, A., et al: ‘Phtyofabricated metallic nanoparticles and their clinical applications‘,RSC Adv., 2016, 6, (107), pp. 105996106010.
    3. 3)
      • 6. Liu, J., Zhao, Z., Feng, H., et al: ‘One-pot synthesis of Ag–Fe3O4 nanocomposites in the absence of additional reductant and its potent antibacterial properties‘,J. Mater. Chem., 2012, 22, pp. 1389113894.
    4. 4)
      • 4. Swaminathan, B., Muthukrishnan, S., Sukumaran, M., et al: ‘Antimicrobial, antioxidant and anticancer activity of biogenic silver nanoparticles – an experimental report’, RSC Adv., 2016, 6, pp. 8143681446.
    5. 5)
      • 38. Zheng, L.-Q., Yu, X.-D., Xu, J.-J., et al: ‘Reversible catalysis for the reaction between methyl orange and NaBH4 by silver nanoparticles‘,Chem. Commun., 2015, 51, (6), pp. 10501105.
    6. 6)
      • 35. Parveen, M., Ahmad, F., Malla, A.M., et al: ‘Microwave-assisted green synthesis of silver nanoparticles from Fraxinus excelsior leaf extract and its antioxidant assay’, Appl. Nanosci., 2016, 6, (2), pp. 267276.
    7. 7)
      • 8. Sahni, G., Panwar, A., Kaur, B.: ‘Controlled green synthesis of silver nanoparticles by Allium cepa and Musa acuminata with strong antimicrobial activity’, Int. Nano Lett., 2015, 5, pp. 93100.
    8. 8)
      • 11. Yugandhar, P., Haribabu, R., Savithramma, N.: ‘Synthesis, characterization and antimicrobial properties of green-synthesised silver nanoparticles from stem bark extract of syzygiumalternifolium (Wt.) walp’, 3 Biotech., 2015, 5, (6), pp. 10311039.
    9. 9)
      • 26. Anandalakshmi, K., Venugobal, J., Ramasamy, V.: ‘Characterization of silver nanoparticles by green synthesis method using pedalium murex leaf extract and their antibacterial activity’, Appl. Nanosci., 2016, 6, (3), pp. 399408.
    10. 10)
      • 24. Makarov, V.V., Love, A.J., Sinitsyna, O.V., et al: ‘Green’ nanotechnologies: synthesis of metal nanoparticles using plants’, Acta Natuare., 2014, 6, pp. 3544.
    11. 11)
      • 10. Kumari, R., Brahma, G., Rajak, S., et al: ‘Antimicrobial activity of green silver nanoparticles produced using aqueous leaf extract of hydrocotylerotundifolia’, Orient Pharm. Exp. Med., 2016, 16, (3), pp. 195201.
    12. 12)
      • 23. Balraj, B., Arulmozhi, M., Siva, C., et al: ‘Cytotoxic potentials of biologically fabricated platinum nanoparticles from Streptomyces sp. on MCF-7 breast cancer cells’, IET Nanobiotechnol., 2017, 11, (3), pp. 241246.
    13. 13)
      • 13. Kokila, T., Ramesh, P.S., Geetha, D.: ‘Biosynthesis of AgNPs using Carica Papaya peel extract and evaluation of its antioxidant and antimicrobial activities‘,Ecotoxicol. Environ. Saf., 2016, 134, pp. 467473.
    14. 14)
      • 5. Ahmad, A., Syed, F., Shah, A., et al: ‘Silver and gold nanoparticles from sargentodoxacuneata: synthesis, characterization and antileishmanial activity’, RSC Adv., 2015, 5, pp. 7379373806.
    15. 15)
      • 12. Lee, K.-J., Park, S.-H., Govarthanan, M., et al: ‘Synthesis of silver nanoparticles using cow milk and their antifungal activity against phytopathogens‘,Mater. Lett., 2013, 105, pp. 128131.
    16. 16)
      • 22. Krishnaraj, C., Ramachandran, R., Mohan, K., et al: ‘Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi’, Spectrochim. Acta A, 2012, 93, pp. 9599.
    17. 17)
      • 21. Kuppurangan, G., Karuppasamy, B., Nagarajan, K., et al: ‘Biogenic synthesis and spectroscopic characterization of silver nanoparticles using leaf extract of indoneesiellaechioides: in vitro assessment on antioxidant, antimicrobial and cytotoxicity potential’, Appl. Nanosci., 2016, 6, pp. 973982.
    18. 18)
      • 16. Edison, T.J.I., Sethuraman, M.G.: ‘Biogenic robust synthesis of silver nanoparticles using punicagranatum peel and its application as a green catalyst for the reduction of an anthropogenic pollutant 4-nitrophenol’, Spectrochim. Acta A, Mol. Biomol.Spectrosc., 2013, 104, pp. 262264.
    19. 19)
      • 14. Ajmal, M., Demirci, S., Siddiq, M., et al: ‘Simultaneous catalytic degradation/reduction of multiple organic compounds by modifiable p (methacrylic acid-co-acrylonitrile)–M (M: Cu, Co) microgel catalyst composites‘,New J. Chem., 2016, 40, (2), pp. 14851496.
    20. 20)
      • 1. Chauhan, K., Sharma, R., Dharela, R., et al: ‘Chitosan-thiomer stabilized silver nano-composites for antimicrobial and antioxidant applications’, RSC Adv., 2016, 6, pp. 7545375464.
    21. 21)
      • 36. Kokila, T., Ramesh, P.S., Geetha, D.: ‘Biosynthesis of silver nanoparticles from cavendish banana peel extract and its antibacterial and free radical scavenging assay: a novel biological approach‘,Appl. Nanosci., 2015, 5, (8), pp. 911920.
    22. 22)
      • 18. Alexandra Pazmino-Duran, E., Monica Giusti, M., Wrolstad, R.E., et al: ‘Anthocyanins from banana bracts (Musa X paradisiaca) as potential food colorants’, Food Chem., 2001, 73, (3), pp. 327332.
    23. 23)
      • 31. Paulkumar, K., Gnanajobitha, G., Vanaja, M., et al: ‘Piper nigrumleaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens’, Sci. World J., 2014, 829894, p. 9.
    24. 24)
      • 7. Moulton, M.C., Braydich-Stolle, L.K., Nadagouda, M.N., et al: ‘Synthesis, characterization and biocompatibility of ‘‘green’’ synthesized silver nanoparticles using tea polyphenols’, Nanoscale, 2010, 2, pp. 763770.
    25. 25)
      • 19. Vanathi, P., Rajiv, P., Sivaraj, R.: ‘Synthesis and characterization of Eichhornia-mediated copper oxide nanoparticles and assessing their antifungal activity against plant pathogens’, Bull. Mater. Sci., 2016, 39, (5), pp. 11651170.
    26. 26)
      • 17. Mahmood, A., Ngah, N., Omar, M.N.: ‘Phytochemicals constituent and antioxidant activities in Musa x Paradisiaca flower’, Eur. J. Sci. Res., 2011, 66, (2), pp. 311318.
    27. 27)
      • 15. Ji, T., Chen, L., Schmitz, M., et al: ‘Hierarchical macrotube/mesopore carbon decorated with mono-dispersed Ag nanoparticles as a highly active catalyst‘,Green Chem., 2015, 17, (4), pp. 25152523.
    28. 28)
      • 28. Prabhu, D., Arulvasu, C., Babu, G., et al: ‘Biologically synthesized green silver nanoparticles from leaf extract of vitexnegundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15’, Process. Biochem., 2013, 48, pp. 317324.
    29. 29)
      • 9. Krishna, M., Bhagavanth Reddy, G., Veerabhadram, G., et al: ‘Eco-friendly green synthesis of silver nanoparticles using salmaliamalabarica: synthesis, characterization, antimicrobial, and catalytic activity studies’, Appl. Nanosci., 2016, 6, (5), pp. 681689.
    30. 30)
      • 37. Mittal, A.K., Bhaumik, J., Kumar, S., et al: ‘Biosynthesis of silver nanoparticles: elucidation of prospective mechanism and therapeutic potential’, J. Colloid Interface Sci., 2014, 415, pp. 39447.
    31. 31)
      • 29. Kumar, B., Smita, K., Debut, A., et al: ‘Extracellular green synthesis of silver nanoparticles using amazonian fruit araza (Eugenia stipitataMcVaugh)’, Trans. Nonferrous Met. Soc. China, 2016, 26, pp. 23632371.
    32. 32)
      • 39. Jyoti, K., Singh, A.: ‘Green synthesis of nanostructured silver particles and their catalytic application in dye degradation’, J. Genet. Eng. Biotechnol., 2016, 14, (2), pp. 311317.
    33. 33)
      • 27. Balan, K., Qing, W., Wang, Y., et al: ‘Antidiabetic activity of silver nanoparticles from green synthesis using Lonicera japonica leaf extract’, RSC Adv., 2016, 6, pp. 4016240168.
    34. 34)
      • 3. Moldovan, B., David, L., Achim, M., et al: ‘A green approach to phytomediated synthesis of silver nanoparticles using SambucusnigraL. Fruits extract and their antioxidant activity’, J. Mol. Liq., 2016, 221, pp. 271278.
    35. 35)
      • 32. Medda, S., Hajra, A., Dey, U., et al: ‘Biosynthesis of silver nanoparticles from Aloe vera leaf extract, and antifungal activity against rhizopus sp. and aspergillussp’,Appl. Nanosci., 2015, 5, (7), pp. 875880.
    36. 36)
      • 30. Ajitha, B., Ashok Kumar Reddy, Y., Sreedhara Reddy, P., et al: ‘Instant biosynthesis of silver nanoparticles using lawsoniainermis leaf extract: innate catalytic, antimicrobial and antioxidant activities’, J. Mol. Liq., 2016, 219, pp. 474481.
    37. 37)
      • 2. Moosavi, R., Ramanathan, S., Lee, Y.Y., et al: ‘Synthesis of antibacterial and magnetic nanocomposites by decorating graphene oxide surface with metal nanoparticles’, RSC Adv., 2015, 5, pp. 7644276450.
    38. 38)
      • 34. Bhuvaneswari, R., John Xavier, R., Arumugam, M.: ‘Facile synthesis of multifunctional silver nanoparticles using mangrove plant excoecariaagallocha L. for its antibacterial, antioxidant and cytotoxic effects‘,J. Parasit. Dis., 2017, 41, (1), pp. 180187.
    39. 39)
      • 25. Kumar, B., Smita, K., Cumbal, L., et al: ‘Fabrication of silver nanoplates using nepheliumlappaceum (Rambutan) peel: A sustainable approach’, J. Mol. Liq., 2015, 211, pp. 476480.
    40. 40)
      • 40. Baruah, B., Gabriel, G.J., Akbashev, M.J., et al: ‘Facile synthesis of silver nanoparticles stabilized by cationic polynorbornenes and their catalytic activity in 4-nitrophenol reduction’, Langmuir, 2013, 29, (3), pp. 42254234.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5136
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5136
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address