access icon free Biosynthesis of silver nanoparticles using Azadirachta indica leaves: characterisation and impact on Staphylococcus aureus growth and glutathione-S-transferase activity

Silver nanoparticles (AgNPs) are toxic to various microbes, but the mechanism of action is not fully understood. The present report explores Azadirachta indica leaf extract as a reducing agent for the rapid biosynthesis of AgNPs. The effects of AgNPs on the growth, glutathione-S-transferase (GST) activity, and total protein concentration in Staphylococcus aureus were investigated, as was its antibacterial activity against seven other bacterial strains. Nanoparticle synthesis was confirmed by the UV-Vis spectrum and colour change of the solution. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential analysis, and infrared spectroscopy were used to characterise the synthesised nanoparticles. The UV-Visible spectrograph showed an absorbance peak at 420 nm. DLS analysis showed an average AgNP size of 159 nm and a Polydispersity Index of 0.373. SEM analysis showed spherical particle shapes, while TEM established an average AgNP size of 7.5 nm. The element analysis profile showed small peaks for calcium, potassium, zinc, chlorine, with the presence of oxygen and silver. AgNPs markedly affected the growth curves and GST activity in treated bacteria, and produced moderate antibacterial activity. Thus AgNPs synthesised from A. indica leaves can interrupt the growth curve and total protein concentration in bacterial cells.

Inspec keywords: nanoparticles; visible spectra; antibacterial activity; nanofabrication; light scattering; enzymes; scanning electron microscopy; electrokinetic effects; infrared spectra; transmission electron microscopy; microorganisms; cellular biophysics; silver; ultraviolet spectra; molecular biophysics; biochemistry; nanomedicine; particle size

Other keywords: spherical particle shapes; Ag; nanoparticle synthesis; UV-Visible spectrograph; antibacterial activity; dynamic light scattering; rapid biosynthesis; microbes; transmission electron microscopy; bacterial cells; element analysis profile; bacterial strains; Azadirachta azadirachta indica leaf; DLS analysis; scanning electron microscopy; TEM; total protein concentration; SEM analysis; zeta potential analysis; green leaves; staphylococcus aureus growth; reducing agent; silver nanoparticles; colour change; infrared spectroscopy; absorbance peak; glutathione-S-transferase activity; growth curve; polydispersity index; GST activity

Subjects: Nanotechnology applications in biomedicine; Infrared and Raman spectra in metals; Cellular biophysics; Visible and ultraviolet spectra of metals, semimetals, and alloys; Physical chemistry of biomolecular solutions and condensed states; Brillouin and Rayleigh scattering; other light scattering (condensed matter); Other methods of nanofabrication; Electrochemistry and electrophoresis; Low-dimensional structures: growth, structure and nonelectronic properties; Biomedical materials; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials

References

    1. 1)
      • 6. Anand, K., Kaviyarasu, K., Muniyasamy, S., et al: ‘Bio-synthesis of silver nanoparticles using agroforestry residue and their catalytic degradation for sustainable waste management’, J. Cluster Sci., 2017, 28, pp. 22792291.
    2. 2)
      • 19. Roy, P., Das, B., Mohanty, A., et al: ‘Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study’, Appl. Nanosci., 2017, 7, pp. 843850.
    3. 3)
      • 1. Magdalane, C.M., Kaviyarasu, K., Vijaya, J.J., et al: ‘Photocatalytic activity of binary metal oxide nanocomposites of CeO2/CdO nanospheres: investigation of optical and antimicrobial activity’, J. Photochem. Photobiol. B Biol., 2016, 163, pp. 7786.
    4. 4)
      • 31. Meléndrez, M.F., Cárdenas, G., Arbiol, J.: ‘Synthesis and characterization of gallium colloidal nanoparticles’, J. Colloid Interface Sci., 2010, 346, (2), pp. 279287.
    5. 5)
      • 35. Kvitek, L., Panacek, A., Soukupova, J., et al: ‘Effect of surfactant and polymers on stability and antibacterial activity of silver nanoparticles (NPs)’, J. Phys. Chem., 2008, 112, pp. 58255834.
    6. 6)
      • 21. Liu, W., Liu, J., Yin, D., et al: ‘Influence of ecological factors on the production of active substances in the anti-cancer plant Sinopodophyllum hexandrum (Royle) T.S. Ying’, PLoS One, 2015, 10, (4), p. e0122981.
    7. 7)
      • 25. Yuan, Y.G., Wang, Y.H., Xing, H.H., et al: ‘Quercetin-mediated synthesis of graphene oxide-silver nanoparticle nanocomposites: a suitable alternative nanotherapy for neuroblastoma’, Int. J. Nanomedicine, 2017, 12, pp. 58195839.
    8. 8)
      • 15. Kwok, K.W., Auffan, M., Badireddy, A.R., et al: ‘Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): effect of coating materials’, Aquat. Toxicol., 2012, 120–121, pp. 5966.
    9. 9)
      • 13. Saxena, A., Tripathi, R.M., Zafar, F., et al: ‘Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity’, Mater. Lett., 2012, 67, pp. 9194.
    10. 10)
      • 14. Tripathi, R.M., Kumar, N., Shrivastav, A., et al: ‘Catalytic activity of biogenic silver nanoparticles synthesized by Ficus panda leaf extract’, J. Mol. Catal. B Enzym., 2013, 96, pp. 7580.
    11. 11)
      • 28. Falconer, J.L., Grainger, D.W.: ‘In vivo comparisons of silver nanoparticle and silver ion transport after intranasal delivery in mice’, J. Control. Release, 2018, 269, pp. 19.
    12. 12)
      • 16. Agarwal, M., Singh Bhadwal, A., Kumar, N., et al: ‘Catalytic degradation of methylene blue by biosynthesised copper nanoflowers using F. benghalensis leaf extract’, IET Nanobiotechnol., 2016, 10, (5), pp. 321325.
    13. 13)
      • 33. Sampaio, B.L., Edrada-Ebel, R., Da Costa, F.B.: ‘Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants’, Sci. Rep., 2016, 6, p. 29265.
    14. 14)
      • 12. Mytilinaios, I., Salih, M., Schofield, H.K., et al: ‘Growth curve prediction from optical density data’, Int. J. Food Microbiol., 2012, 154, pp. 169176.
    15. 15)
      • 32. Shakeel, A., Saifullah, , Mudasir, A., et al: ‘Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract’, J. Radiat. Res. Appl. Sci., 2016, 9, (1), pp. 17.
    16. 16)
      • 34. Ajayi, E., Afolayan, A.: ‘Green synthesis, characterization and biological activities of silver nanoparticles from alkalinized Cymbopogon citratus Stapf’, Adv. Nat. Sci, Nanosci. Nanotechnol., 2017, 8, p. 015017.
    17. 17)
      • 24. Subapriya, R., Nagini, S.: ‘Medicinal properties of neem leaves: a review’, Curr. Med. Chem. Anticancer Agents, 2005, 5, (2), pp. 149156.
    18. 18)
      • 36. Pal, S., Tak, Y.K., Song, J.M.: ‘Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli’, Appl. Environ. Microbiol., 2007, 73, pp. 17121720.
    19. 19)
      • 18. Tripathi, A., Chandrasekaran, N., Raichur, A.M., et al: ‘Antibacterial applications of silver nanoparticles synthesized by aqueous extract of Azadirachta indica (Neem) leaves’, J. Biomed. Nanotechnol., 2009, 5, (1), pp. 9398.
    20. 20)
      • 11. Su, H.L., Chou, C.C., Hung, D.J., et al: ‘The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay’, Biomaterials, 2009, 30, pp. 59795987.
    21. 21)
      • 17. El-Ansary, A., Warsy, A., Daghestani, M., et al: ‘Characterization, antibacterial, and neurotoxic effect of green synthesized nanosilver using Ziziphus spina Christi aqueous leaf extract collected from Riyadh, Saudi Arabia’, Mater. Res. Express, 2018, 5, p. 025033.
    22. 22)
      • 26. Bradford, M.M.: ‘A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding’, Anal. Biochem., 1976, 72, pp. 248254.
    23. 23)
      • 29. Sikder, M., Lead, J.R., Chandler, G.T., et al: ‘A rapid approach for measuring silver nanoparticle concentration and dissolution in seawater byUV–vis’, Sci. Total Environ., 2018, 618, pp. 597607.
    24. 24)
      • 30. Abou El-Nour, K.M.M., Eftaiha, A., Al-Warthan, A., et al: ‘Synthesis and applications of silver nanoparticles’, Arabian J. Chem., 2010, 3, (3), pp. 135140.
    25. 25)
      • 7. Tripathi, R.M., Gupta, R.K., Bhadwal, A.S., et al: ‘Fungal biomolecules assisted biosynthesis of Au-Ag alloy nanoparticles and evaluation of their catalytic property’, IET Nanobiotechnol., 2015, 9, (4), pp. 178183.
    26. 26)
      • 39. Abbaszadegan, A., Ghahramani, Y., Gholami, A., et al: ‘The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study’, J. Nanomater., 2015, 2015, 8 pp. Article ID 720654, https://doi.org/10.1155/2015/720654.
    27. 27)
      • 3. Veerasamy, R., Xin, T.Z., Gunasagaran, S., et al: ‘Biosynthesis of silver nanoparticles using mangosteen leaf extrac tand evaluation of their antimicrobial activities’, J. Saudi Chem. Soc., 2011, 15, pp. 113120.
    28. 28)
      • 9. Mahajan, R., Bhadwal, A.S., Kumar, N., et al: ‘Green synthesis of highly stable carbon nanodots and their photocatalytic performance’, IET Nanobiotechnol., 2017, 11, (4), pp. 360364.
    29. 29)
      • 23. Reena, R., Afton, C.: ‘Medicinal plants with traditional use: ethnobotany in the Indian subcontinent clinics in dermatology’, Available online 10 March 2018 In Press, Accepted Manuscript — Note to users.
    30. 30)
      • 2. Tripathi, R.M., Shrivastav, B.R., Shrivastav, A.: ‘Antibacterial and catalytic activity of biogenic gold nanoparticles synthesised by Trichoderma harzianum’, IET Nanobiotechnol., 2018, 12, (4), pp. 509513.
    31. 31)
      • 5. Jayaprakash, N., Judith Vijaya, J., Kaviyarasu, K., et al: ‘Green synthesis of Ag nanoparticles using tamarind fruit extract for the antibacterial studies’, J. Photochem. Photobiol. B Biol., 2017, 169, pp. 178185.
    32. 32)
      • 20. Guo, H., Chamberlain, S.A., Elhaik, E., et al: ‘Geographic variation in plant community structure of salt marshes: species, functional and phylogenetic perspectives’, PLoS One, 2015, 10, (5), p. e0127781.
    33. 33)
      • 37. Fuentes, M.S., Benimeli, C.S., Cuozzo, S.A., et al: ‘Isolation of pesticide degrading actinomycetes from a contaminated site: bacterial growth, removal and dechlorination of organochlorine pesticides’, Int. Biodeterior. Biodegradation, 2010, 64, pp. 434441.
    34. 34)
      • 38. Breusing, N., Grune, T.: ‘Regulation of proteasome-mediated protein degradation during oxidative stress and aging’, Biol. Chem., 2008, 389, pp. 203209.
    35. 35)
      • 4. Prabhu, S., Poulose, E.K.: ‘Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications and toxicity effects’, Int. Nano. Lett., 2012, 2, pp. 3242.
    36. 36)
      • 8. Mehrotra, N., Tripathi, R.M.: ‘Short interfering RNA therapeutics: nanocarriers, prospects and limitations’, IET Nanobiotechnol., 2015, 9, (6), pp. 386395.
    37. 37)
      • 27. Habig, W.H., Pabst, M.J., Jacoby, W.B.: ‘Glutathione-S-transferase. The first enzymatic step in mercapturic acid formation’, J. Biol. Chem., 1974, 249, pp. 71307139.
    38. 38)
      • 22. Mridha, M.A.U, Al-Suhaibani, N.A.: ‘Prospect of Neem plantation at Arafat, Saudi Arabia’, Curr. World Environ., 2014, 9, (1), pp. 8186.
    39. 39)
      • 10. Jung, W.K., Koo, H.C., Kim, K.W, et al: ‘Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli’, Appl. Environ. Microbiol., 2008, 74, pp. 21712178.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5133
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5133
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading