Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Silver nanoparticles and silver salt (AgNO3) elicits morphogenic and biochemical variations in callus cultures of sugarcane

The research work was arranged to check the role of AgNPs and silver ions on callus cells of sugarcane (Saccharum spp. cv CP-77,400). AgNPs were synthesized chemically and characterized by UV-Vis spectra, XRD and SEM. AgNPs and silver ions were applied in various concentrations (0, 20, 40, 60 ppm) to sugarcane calli and the induced stress was characterized by studying various morphological and biochemical parameters. AgNPs and silver ions treatments produced high levels of malondialdehyde, proline, proteins, TP and TF contents. Similarly, CAT, SOD and POX activity was also significant in both treatments. The lower concentration of AgNPs and silver ions (20 ppm) provided maximum intracellular GSH level. This work mainly showed effects of AgNPs and silver ions on sugarcane calli in terms of morphological aberrations and cell membrane damage due to severe oxidative stress and production of enhanced levels of enzymatic and non-enzymatic antioxidants as self-defence to tolerate oxidative stress by scavenging reactive oxygen species. These preliminary findings will provide the way to study ecotoxicity mechanism of the metal ions and NPs in medicine industry and in vitro toxicity research. Furthermore, silver ions alone and their chemically synthesised AgNPs can be used for various biomedical applications in future.

References

    1. 1)
      • 15. Bello-Bello, J.J., Spinoso-Castillo, J.L., Arano-Avalos, S., et al: ‘Cytotoxic, genotoxic, and polymorphism effects on Vanilla planifolia Jacks ex Andrews after long-term exposure to argovit silver nanoparticles’, Nanomaterials, 2018, 8, p. 754.
    2. 2)
      • 16. Murashige, T., Skoog, F.: ‘A revised medium for rapid growth and bioassays with tobacco tissue cultures’, Physiol. Plant., 1962, 15, (3), pp. 473497.
    3. 3)
      • 10. Chung, I.M., Rekha, K., Rajakumar, G., et al: ‘Elicitation of silver nanoparticles enhanced the secondary metabolites and pharmacological activities in cell suspension cultures of bitter gourd’, 3 Biotech., 2018, 8, (10), p. 412.
    4. 4)
      • 49. Filek, M., Walas, S., Mrowiec, H., et al: ‘Membrane permeability and micro and macro element accumulation in spring wheat cultivars during the short-term effect of salinity-and PEG-induced water stress’, Acta. Physiol. Plant., 2012, 34, (3), pp. 985995.
    5. 5)
      • 33. Mie, R., Samsudin, M.W., Din, L.B., et al: ‘Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum’, Int. J. Nanomed., 2014, 9, pp. 121127.
    6. 6)
      • 6. Biju, S., Fuentes, S., Gupta, D., et al: ‘Silicon improves seed germination and alleviates drought stress in lentil crops by regulating osmolytes, hydrolytic enzymes and antioxidant defense system’, Plant Physiol. Biochem., 2017, 119, pp. 250264.
    7. 7)
      • 42. Khodakovskaya, M.V., de Silva, K., Biris, A.S., et al: ‘Carbon nanotubes induce growth enhancement of tobacco cells’, ACS Nano., 2012, 6, pp. 21282135.
    8. 8)
      • 50. Syu, Y., Hung, J.H., Chen, J.C., et al: ‘Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression’, Plant Physiol. Biochem., 2014, 83, pp. 5764.
    9. 9)
      • 65. Ahmed, M., Qadeer, U., Ahmed, Z.I., et al: ‘Improvement of wheat (Triticum aestivum) drought tolerance by seed priming with silicon’, Arch. Agron. Soil Sci., 2016, 62, pp. 299315.
    10. 10)
      • 23. Velioglu, Y.S., Mazza, G., Gao, L., et al: ‘Antioxidant activity and total phenolics in selected fruits, vegetables and grains products’, J. Agri. Food. Chem., 1998, 46, pp. 41134117.
    11. 11)
      • 47. Nair, P.M.G., Chung, I.M.: ‘Physiological and molecular level studies on the toxicity of silver nanoparticles in germinating seedlings of mung bean (Vigna radiata L.)’, Acta. Physiol. Plant., 2015, 37, (1), pp. 111.
    12. 12)
      • 35. Mandeh, M., Omidi, M., Rahaie, M.: ‘In vitro influences of tiO2 nanoparticles on barley (Hordeum vulgare L.) tissue culture’, Biol. Trace Elem. Res., 2012, 150, pp. 376380.
    13. 13)
      • 20. Dhindsa, R.S., Plumb-Dhinds, P., Thorpe, T.A., et al: ‘Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase’, J. Exp. Bot., 1981, 32, pp. 93101.
    14. 14)
      • 11. Ali, A., Mohammad, S., Khan, M.A., et al: ‘Silver nanoparticles elicited in vitro callus cultures for accumulation of biomass and secondary metabolites in Caralluma tuberculate’, Artif. Cells Nanomed. Biotechnol., 2019, 47, (1), pp. 715724.
    15. 15)
      • 66. Signorelli, S., Arellano, J.B., Melo, T.B., et al: ‘Proline does not quench singlet oxygen: evidence to reconsider its protective role in plants’, Plant. Physiol. Biochem., 2013, 64, pp. 8083.
    16. 16)
      • 55. Shakeran, Z., Keyhanfar, M., Asghari, G., et al: ‘Biotic elicitation for scopolamine production by hairy root cultures of Datura metel’, Turk. J. Biol., 2015, 39, pp. 111118.
    17. 17)
      • 72. Tan, X.M., Lin, C., Fugetsu, B.: ‘Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells’, Carbon. N. Y., 2009, 47, pp. 34793487.
    18. 18)
      • 62. Grzesiak, M., Filek, M., Barbasz, A., et al: ‘Relationships between polyamines, ethylene, osmoprotectants and antioxidant enzymes activities in wheat seedlings after short-term PEG-and NaCl-induced stresses’, Plant. Growth. Regul., 2013, 69, (2), pp. 177189.
    19. 19)
      • 67. Krishnaraj, C., Jagan, E.G., Ramachandran, R., et al: ‘Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (L) wettst. Plant metabolism’, Process Biochem., 2012, 47, pp. 651658.
    20. 20)
      • 46. Shaw, A.K., Hossain, Z.: ‘Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings’, Chemosphere, 2013, 93, (6), pp. 906915.
    21. 21)
      • 17. Sivaraman, S.K., Elango, I., Kumar, S., et al: ‘A green protocol for room temperature synthesis of silver nanoparticles in seconds’, Curr. Sci., 2009, 97, pp. 10551059.
    22. 22)
      • 37. Aghdaei, M., Salehi, H., Sarmast, M.K.: ‘Effects of silver nanoparticles on Tecomella undulate (roxh.) seem. Micropropagation’, Adv. Hortic. Sci., 2012, 26, pp. 2124.
    23. 23)
      • 1. Aziz, N., Faraz, M., Pandey, R., et al: ‘Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties’, Langmuir, 2015, 31, (42), pp. 1160511612.
    24. 24)
      • 48. Dimkpa, C.O., McLean, J.E., Latta, D.E., et al: ‘CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat’, J. Nanopart. Res., 2012, 14, (9), pp. 115.
    25. 25)
      • 52. Kim, S., Lee, S., Lee, I., et al: ‘Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus’, Water. Air. Soil. Pollut., 2012, 223, (5), pp. 27992806.
    26. 26)
      • 30. Nazeruddin, G., Prasad, N., Waghmare, S.R., et al: ‘Extracellular biosynthesis of silver nanoparticle using azadirachta indica leaf extract and its anti-microbial activity’, J. Alloys Compd., 2014, 583, pp. 272277.
    27. 27)
      • 68. Lee, W.M., Kwak, J.I., An, Y.J., et al: ‘Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity’, Chemosphere, 2012, 86, (5), pp. 491499.
    28. 28)
      • 25. Nayyar, H., Gupta, D.: ‘Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants’, Environ. Exp. Bot., 2006, 58, pp. 106113.
    29. 29)
      • 8. Iqbal, M., Aamir, A., Naima, H.N., et al: ‘Effect of explants and growth regulators on the expression of callogenesis somatic embryogenesis and plantlets formation in sugarcane (Saccharum officinarum L.)’, Int. J. Biosci., 2016, 9, pp. 147156.
    30. 30)
      • 9. Bello-Bello, J.J., Chavez-Santoscoy, R.A., Lecona-Guzma, C.A., et al: ‘Hormetic response by silver nanoparticles on in vitro multiplication of sugarcane (Saccharum spp. Cv. Mex 69–290) using a temporary immersion system’, Dose-Respon: An Internat. J., 2017, 17, pp. 19.
    31. 31)
      • 61. Mehmood, A., Murtaza, G.: ‘Impact of biosynthesized silver nanoparticles on protein and carbohydrate contents in seeds of Pisum sativum L’, Crop Breed. Appl. Biotechnol., 2017, 17, pp. 334340.
    32. 32)
      • 71. Hojjat, S.S.: ‘The effect of silver nanoparticle on lentil seed germination under drought stress’, Int. J. Farming Allied Sci., 2016, 5, (3), pp. 208212.
    33. 33)
      • 36. Yin, L., Cheng, Y., Espinasse, B., et al: ‘More than the ions: the effects of silver nanoparticles on Lolium multiflorum’, Environ. Sci. Technol., 2011, 45, (6), pp. 23602367.
    34. 34)
      • 59. Mishra, B., Srivastava, J., Lal, J., et al: ‘Physiological and biochemical adaptations in lentil genotypes under drought stress’, Russ. J. Plant Physiol., 2016, 63, pp. 695708.
    35. 35)
      • 14. Yanga, J., Caob, W., Ruia, Y., et al: ‘Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms’, J. Plant Interact., 2017, 12, (1), pp. 158169.
    36. 36)
      • 63. Mohamed, A.K.S.H., Qayyum, M.F., Abdel-Hadi, A.M., et al: ‘Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat’, Arch. Agro. Soil Sci., 2017, 63, (12), pp. 17361747.
    37. 37)
      • 4. Singh, M., Kumar, J., Singh, S., et al: ‘Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review’, Rev. Environ. Sci. Bio., 2015, 14, pp. 407426.
    38. 38)
      • 40. Ewais, E.A., Desouky, S.A., Elshazly, E.H.: ‘Evaluation of callus responses of Solanum nigrum L. Exposed to biologically synthesized silver nanoparticles’, Nanosci. Nanotechnol., 2015, 5, pp. 4556.
    39. 39)
      • 3. Rizwan, M., Ali, S., Qayyum, M.F., et al: ‘Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review’, J. Hazard Mater., 2017, 322, pp. 216.
    40. 40)
      • 21. Bates, L.S., Waldron, R.P., Teare, I.D., et al: ‘Rapid determination of free proline for water stress studies’, Plant Soil., 1973, 39, pp. 205209.
    41. 41)
      • 7. Dutta, A., Dolui, S.K.: ‘Tannic acid assisted one step synthesis route for stable colloidal dispersion of nickel nanostructures’, Appl. Surf. Sci., 2011, 257, pp. 68896896.
    42. 42)
      • 54. Chamani, E., Ghalehtaki, S.K., Mohebodini, M., et al: ‘The effect of zinc oxide nanoparticles and humic acid on morphological characters and secondary metabolite production in Lilium ledebourii Bioss’, Iran. J. Genet. Plant Breed., 2015, 4, pp. 1119.
    43. 43)
      • 24. Chang, C., Yang, M., Wen, H., et al: ‘Estimation of total flavonoid content in propolis by two complimentary colorimetric method’, J. Food Drug Anal., 2002, 10, pp. 178182.
    44. 44)
      • 43. Fazal, H., Abbasi, B.H., Ahmad, N., et al: ‘Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L’, Appl. Biochem. Biotechnol., 2016, 180, pp. 10761092.
    45. 45)
      • 2. Zaka, M., Abbasi, B.H., Rahman, L., et al: ‘Synthesis and characterisation of metal nanoparticles and their effects on seed germination and seedling growth in commercially important Eruca sativa’, IET. Nanobiotech., 2016, 10, (3), pp. 17.
    46. 46)
      • 74. Cvjetko, P., Zovko, M., Stefanic, P.P., et al: ‘Phytotoxic effects of silver nanoparticles in tobacco plants’, Environ. Sci. Pollut. Res., 2017, 25, (6), pp. 55905602.
    47. 47)
      • 73. Ma, C., Liu, H., Guo, H., et al: ‘Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO2 and in2O3 nanoparticles’, Environ. Sci.: Nano., 2016, 3, pp. 13691379.
    48. 48)
      • 44. Lee, C.W.V., Mahendra, S., Zodrow, K., et al: ‘Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana’, Environ. Toxicol. Chem., 2010, 29, (3), pp. 669675.
    49. 49)
      • 27. Lagrimini, L.M.: ‘Wound-induced deposition of polyphenols in transgenic plants over expressing peroxidase’, Plant Physiol., 1991, 96, pp. 577583.
    50. 50)
      • 70. Jiang, H.S., Qiu, X.N., Li, G.B., et al: ‘Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza’, Environ. Toxicol. Chem., 2014, 33, (6), pp. 13981405.
    51. 51)
      • 31. Gogoi, N., Babu, P.J., Mahanta, C., et al: ‘Green synthesis and characterization of silver nanoparticles using alcoholic flower extract of Nyctanthes arbortristis and in vitro investigation of their antibacterial and cytotoxic activities’, Mater. Sci. Eng. C., 2015, 46, pp. 463469.
    52. 52)
      • 69. Helaly, M.N., El-Metwally, M.A., El-Hoseiny, H., et al: ‘Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana’, Aust. J. Crop Sci., 2014, 8, (4), pp. 612624.
    53. 53)
      • 19. Arokiyaraj, S., Arasu, M.V., Vincent, S., et al: ‘Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L and its antibacterial and cytotoxic effects: an in vitro study’, Int. J. Nanomed., 2014, 9, pp. 379388.
    54. 54)
      • 51. Poborilova, Z., Opatrilova, R., Babula, P.: ‘Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model’, Environ. Exp. Bot., 2013, 91, pp. 111.
    55. 55)
      • 45. Marslin, G., Sheeba, C.J., Franklin, G., et al: ‘Nanoparticles Alter secondary metabolism in plants via ROS burst’, Front Plant Sci., 2017, 8, p. 832.
    56. 56)
      • 22. Lowry, O.H., Rosebrough, N.J., Farr, A.I., et al: ‘Protein measurement with the folin phenol reagent’, J. Bio. Biochem., 1951, 193, (1), pp. 265275.
    57. 57)
      • 28. Aebi, H.: ‘Catalase in vitro’, Methods. Enzymol., 1984, 105, pp. 121126.
    58. 58)
      • 26. Ullah, N., Haq, I.U., Safdar, N.: ‘Physiological and biochemical mechanisms of allelopathy mediated by the allelochemical extracts of Phytolacca latbenia (Moq.) H. Walter’, Toxicol. Ind. Health., 2015, 31, pp. 931993.
    59. 59)
      • 41. Ghorbanpour, M., Hadian, J.: ‘Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Satureja khuzestanica grown in vitro’, Carbon. N. Y., 2015, 94, pp. 749759.
    60. 60)
      • 32. Iravani, S.: ‘Green synthesis of metal nanoparticles using plants’, Green Chem., 2011, 13, pp. 26382650.
    61. 61)
      • 5. Khaliq, A., Zia-ul-Haq, M., Ali, F., et al: ‘Salinity tolerance in wheat cultivars is related to enhanced activities of enzymatic antioxidants and reduced lipid peroxidation’, CLEAN – Soil Air Water., 2015, 43, pp. 12481258.
    62. 62)
      • 53. Hussain, M., Raja, N.I., Mashwani, Z.R., et al: ‘Green synthesis and characterisation of silver nanoparticles and their effects on antimicrobial efficacy and biochemical profiling in Citrus reticulata’, IET Nanobiotechnol., 2018, 12, (4), pp. 514519.
    63. 63)
      • 18. Oćwieja, M., Adamczyk, Z., Morga, M., et al: ‘High density silver nanoparticle monolayers produced by colloid self-assembly on polyelectrolyte supporting layers’, J. Colloid. Interface. Sci., 2011, 364, pp. 3948.
    64. 64)
      • 29. Ellman, G.L.: ‘A colorimetric method of determining of low concentrations of mercaptans’, Arch. Biochem. Biophys., 1958, 74, (2), pp. 443450.
    65. 65)
      • 56. Hussain, M., Raja, N.I., Mashwani, Z.R., et al: ‘In vitro germination and biochemical profiling of Citrus reticulata in response to green synthesized zinc and copper nanoparticles’, IET Nanobiotechnol., 2017, 11, pp. 790796.
    66. 66)
      • 58. Mehrian, S.K., Heidari, R., Rahmani, F.: ‘Effect of silver nanoparticles on free amino acids content and antioxidant defense system of tomato plants’, Ind. J. Plant Physiol., 2015, 20, pp. 257263.
    67. 67)
      • 60. Mohamed, A.K.S.H., Qayyum, M.F., Abdel-Hadi, A.M., et al: ‘Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat’, Arch. Agron. Soil Sci., 2017, 63, (12), pp. 17361747.
    68. 68)
      • 34. Hussain, M., Raja, N.I., Iqbal, M., et al: ‘Seed germination and biochemical profile of Citrus reticulata (kinnow) exposed to green synthesised silver nanoparticles’, IET Nanobiotechnol., 2018, 12, pp. 688693.
    69. 69)
      • 57. Iqbal, M., Raja, N.I., Mashwani, Z.R., et al: ‘Assessment of AgNPs exposure on physiological and biochemical changes and antioxidative defence system in wheat (Triticum aestivum L) under heat stress’, IET Nanobiotechnol., 2018, 13, (2), pp. 230236.
    70. 70)
      • 64. Tripathi, D.K., Singh, S., Singh, S., et al: ‘Nitric oxide alleviates silver nanoparticles (AgNPs)-induced phytotoxicity in Pisum sativum seedlings’, Plant Physiol. Biochem., 2017, 110, pp. 167177.
    71. 71)
      • 39. Alharby, H.F., Metwali, E.M.R., Fuller, M.P., et al: Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum mill.) under salt stress’, Arch. Biol. Sci., 2016, 68, pp. 723735.
    72. 72)
      • 38. Sharma, P., Bhatt, D., Zaidi, M.G.H., et al: ‘Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea’, Appl. Biochem. Biotechnol., 2012, 167, pp. 22252233.
    73. 73)
      • 12. Anum, F., Raja, N.I., Hussain, M., et al: ‘Effect of green synthesised silver nanoparticles on morphogenic and biochemical variations in callus cultures of Kinnow mandarin (Citrus reticulata L.)’, IET Nanobiotechnol., 2019, 13, (5), pp. 541545.
    74. 74)
      • 13. Barbasz, A., Kreczmer, B., Ocwieja, M., et al: ‘Effects of exposure of callus cells of two wheat varieties to silver nanoparticles and silver salt (AgNO3’, Acta Physiol. Plant., 2016, 38, p. 76.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5122
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5122
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address