Biogenic synthesis and thermo-magnetic study of highly porous carbon nanotubes

Biogenic synthesis and thermo-magnetic study of highly porous carbon nanotubes

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Nanomaterials synthesis using natural sources is the technology to up come with advanced materials through extracts of plant, microorganisms, poultry waste etc. In this study, the authors report the synthesis of porous carbon nanotubes using high-temperature decomposition technique facilitated by cobalt salt using chicken fats, a poultry waste as a precursor. Since chicken fats contain fatty acids which can decompose into short hydrocarbon chains and cobalt can act as the catalyst. The formation of carbon nanotubes was confirmed by Raman spectra, peaks at 1580 and 1350.46 cm−1 confirmed the graphite mode G-band and structural imperfections defect mode D-band, respectively. Transmission electron microscopy showed the formation of tube-like structures. Nitrogen adsorption–desorption studies showed the high-surface area of 418.1 m2g−1 with an estimated pore diameter of 8.1 nm. Thermogravimetry analysis–derivative thermogravimetric analysis–differential thermal analysis showed the instant weight loss at 517°C attributed to the rapid combustion of nanotubes. A vibrating-sample magnetometer showed the paramagnetic nature of the so-formed carbon nanotubes formed.

Inspec keywords: differential thermal analysis; paramagnetic materials; nanofabrication; infrared spectra; desorption; pyrolysis; thermal analysis; decomposition; X-ray diffraction; carbon nanotubes; adsorption; scanning electron microscopy; transmission electron microscopy; nanomagnetics; Raman spectra

Other keywords: structural imperfections defect mode D-band; poultry waste; differential thermal analysis; microorganisms; C; thermogravimetry analysis; nitrogen adsorption-desorption studies; biogenic synthesis; high-temperature decomposition technique; thermo-magnetic properties; Raman spectra; fatty acids; graphite mode G-band; short hydrocarbon chains; temperature 517.0 degC; highly porous carbon nanotubes; chicken fats; transmission electron microscopy; paramagnetic nature; cobalt salt; carbon nanotubes

Subjects: Solubility, segregation, and mixing; Structure of fullerenes and fullerene-related materials; Magnetic properties of nanostructures; Low-dimensional structures: growth, structure and nonelectronic properties; Decomposition reactions (pyrolysis, dissociation, and group ejection); Optical properties of fullerenes and related materials (thin films/low-dimensional structures); Sorption and accommodation coefficients (surface chemistry); Amorphous and nanostructured magnetic materials; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Diamagnetism and paramagnetism in nonmetals; Infrared and Raman spectra in inorganic crystals; Preparation of fullerenes and fullerene-related materials, intercalation compounds, and diamond; Adsorption and desorption kinetics; evaporation and condensation


    1. 1)
      • 1. Suriani, A.B., Dalila, A.R., Mohamed, A., et al: ‘Vertically aligned carbon nanotubes synthesized from waste chicken fat’, Mater. Lett., 2013, 101, pp. 6164.
    2. 2)
      • 2. Rosmi, M.S., Shinde, S.M., Rahman, N.D.A., et al: ‘Synthesis of uniform monolayer graphene on re-solidified copper from waste chicken fat by low pressure chemical vapor deposition’, Mater. Res. Bull., 2016, 83, pp. 573580.
    3. 3)
      • 3. Ranu, R., Chauhan, Y., Singh, P.K., et al: ‘Electrical, structural and thermal studies of carbon nanotubes from natural legume seeds: kala chana’, Phase Transit., 2016, 89, (12), pp. 11461154.
    4. 4)
      • 4. Ghosh, P., Soga, T., Afre, R.A., et al: ‘Simplified synthesis of single-walled carbon nanotubes from a botanical hydrocarbon: turpentine oil’, J. Alloys Compd., 2008, 462, (1–2), pp. 289293.
    5. 5)
      • 5. Afre, R.A., Soga, T., Jimbo, T., et al: ‘Carbon nanotubes by spray pyrolysis of turpentine oil at different temperatures and their studies’, Microporous Mesoporous Mater., 2006, 96, (1–3), pp. 184190.
    6. 6)
      • 6. Shankar, S.S., Rai, A., Ahmad, A., et al: ‘Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using neem (Azadirachta indica) leaf broth’, J. Colloid Interface Sci., 2004, 275, (2), pp. 496502.
    7. 7)
      • 7. Nair, B., Pradeep, T.: ‘Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains’, Cryst. Growth Des., 2002, 2, (4), pp. 293298.
    8. 8)
      • 8. Kumar, N., Bhadwal, A.S., Garg, M., et al: ‘Photocatalytic and antibacterial biomimetic ZnO nanoparticles’, Anal. Methods, 2017, 9, (33), pp. 47764782.
    9. 9)
      • 9. Stalin Dhas, T., Ganesh Kumar, V., Stanley Abraham, L., et al: ‘Sargassum myriocystum mediated biosynthesis of gold nanoparticles’, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 2012, 99, pp. 97101.
    10. 10)
      • 10. Colomer, J.-F., Piedigrosso, P., Willems, I., et al: ‘Purification of catalytically produced multi-wall nanotubes’, J. Chem. Soc. Faraday Trans., 1998, 94, (24), pp. 37533758.
    11. 11)
      • 11. Kumar, M., Ando, Y.: ‘A simple method of producing aligned carbon nanotubes from an unconventional precursor – camphor’, Chem. Phys. Lett., 2003, 374, (5–6), pp. 521526.
    12. 12)
      • 12. Azmina, M.S., Suriani, A.B., Salina, M., et al: ‘Variety of bio-hydrocarbon precursors for the synthesis of carbon nanotubes’, Nano Hybrids, 2012, 2, pp. 4363.
    13. 13)
      • 13. Tang, Q., Zhou, Z.: ‘Graphene-analogous low-dimensional materials’, Prog. Mater. Sci., 2013, 58, (8), pp. 12441315.
    14. 14)
      • 14. Zeng, L., Alemany, L.B., Edwards, C.L., et al: ‘Demonstration of covalent sidewall functionalization of single wall carbon nanotubes by NMR spectroscopy: Side chain length dependence on the observation of the sidewall sp3 carbons’, Nano Res., 2008, 1, (1), pp. 7288.
    15. 15)
      • 15. Ohba, T., Kaneko, K.: ‘Internal surface area evaluation of carbon nanotube with GCMC simulation-assisted N2 adsorption’, J. Phys. Chem. B, 2002, 106, (29), pp. 71717176.
    16. 16)
      • 16. Tiwari, B., Tripathi, I.P., Saxena, S., et al: ‘Synthesis and characterization of carbon metal nano tubes’, AIP Conf. Proc., 2010, 1324, pp. 402406.
    17. 17)
      • 17. Morelli, D.T., Uher, C.: ‘Correlating optical absorption and thermal conductivity in diamond’, Appl. Phys. Lett., 1993, 63, (2), pp. 165167.
    18. 18)
      • 18. Suriani, A.B., Dalila, A.R., Mohamed, A., et al: ‘Parametric study of waste chicken fat catalytic chemical vapour deposition for controlled synthesis of vertically aligned carbon nanotubes’, Cogent Phys., 2016, 3, (1), p. 1247486.
    19. 19)
      • 19. Andrews, R.J., Smith, C.F., Alexander, A.J.: ‘Mechanism of carbon nanotube growth from camphor and camphor analogs by chemical vapor deposition’, Carbon N. Y., 2006, 44, (2), pp. 341347.
    20. 20)
      • 20. Maryam, M., Suriani, A.B., Shamsudin, M.S., et al: ‘BET analysis on carbon nanotubes: comparison between single and double stage thermal CVD method’, Adv. Mater. Res., 2012, 626, (2014), pp. 289293.
    21. 21)
      • 21. Saxena, S., Ranu, R., Hait, C., et al: ‘Erratum to: synthesis and characterization of functionalized CNTs using soya and milk protein’, Appl. Nanosci., 2014, 4, (7), pp. 799799.
    22. 22)
      • 22. Dillon, A.C., Jones, K.M., Bekkedahl, T.A., et al: ‘Storage of hydrogen in single-walled carbon nanotubes’, Nature, 1997, 386, (6623), pp. 377379.
    23. 23)
      • 23. Tang, H., Wang, J., Yin, H., et al: ‘Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes’, Adv. Mater., 2015, 27, (6), pp. 11171123.
    24. 24)
      • 24. Bokobza, L., Zhang, J.: ‘Raman spectroscopic characterization of multiwall carbon nanotubes and of composites’, Express Polym. Lett., 2012, 6, (7), pp. 601608.
    25. 25)
      • 25. Nie, Y., Bai, L., Gao, J., et al: ‘Imaging the electronic structure of carbon nanotubes decorated with Fe 2O3 nanoparticles’, Appl. Surf. Sci., 2013, 273, pp. 386390.
    26. 26)
      • 26. Miralles, P., Johnson, E., Church, T.L., et al: ‘Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake’, J. R. Soc. Interface, 2012, 9, (77), pp. 35143527.
    27. 27)
      • 27. Nelson, D.J., Kumar, R.: ‘Effect of single-walled carbon nanotube association upon 1H NMR spectra of amines’, J. Phys. Chem. C, 2013, 117, (6), pp. 1014010147.
    28. 28)
      • 28. Esteves, I.A.A.C., Cruz, F.J.A.L., Müller, E.A., et al: ‘Determination of the surface area and porosity of carbon nanotube bundles from a langmuirian analysis of sub- and supercritical adsorption data’, Carbon, 2009, 47, (4), pp. 948956.
    29. 29)
      • 29. Li, F., Wang, Y., Wang, D., et al: ‘Characterization of single-wall carbon nanotubes by N2 adsorption’, Carbon, 2004, 42, (12–13), pp. 23752383.
    30. 30)
      • 30. Kuryliszyn-Kudelska, I., Małolepszy, A., Mazurkiewicz, M., et al: ‘Magnetic properties of ‘as-prepared’ and chemically modified multiwalled carbon nanotubes’, Acta Phys. Pol. A, 2011, 119, (5), pp. 597599.
    31. 31)
      • 31. Pistone, A., Iannazzo, D., Fazio, M., et al: ‘Synthesis and magnetic properties of multiwalled carbon nanotubes decorated with magnetite nanoparticles’, Phys. B, Condens. Matter, 2014, 435, pp. 8891.

Related content

This is a required field
Please enter a valid email address