Green synthesis of magnetically recoverable Fe3O4/HZSM-5 and its Ag nanocomposite using Juglans regia L. leaf extract and their evaluation as catalysts for reduction of organic pollutants

Green synthesis of magnetically recoverable Fe3O4/HZSM-5 and its Ag nanocomposite using Juglans regia L. leaf extract and their evaluation as catalysts for reduction of organic pollutants

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this work, an Fe3O4/HZSM-5 nanocomposite was synthesised in the presence of Juglans regia L. leaf extract. Then, silver nanoparticles (Ag NPs) were immobilised on the surface of prepared magnetically recoverable HZSM-5 using selected extract for reduction of Ag+ ions to Ag NPs and their stabilisation on the surface of the nanocomposite. The reduction of Ag+ ions occurs at room temperature within a few minutes. Characterisation of the prepared catalysts has been carried out using fourier transform infrared (FT-IR), X-ray diffraction, field-emission scanning electron microscopy (FESEM), energy-dispersive spectroscopy, Brunauer–Emmett–Teller method, and a vibrating sample magnetometer. According to the FESEM images of the nanocomposites, the average size of the Ag NPs on the Fe3O4/HZSM-5 surface was >70 nm. The Ag/Fe3O4/HZSM-5 nanocomposite was a highly active catalyst for the reduction of methyl orange and 4-nitrophenol in aqueous medium. The utilisation of recycled catalyst for three times in the reduction process does not decrease its activity.


    1. 1)
      • 1. Hosseinzadeh, S., Jafarikukhdan, A., Hosseini, A., et al: ‘The application of medicinal plants in traditional and modern medicine: a review of Thymus vulgaris’, Int. J. Clin. Med., 2015, 6, pp. 635642.
    2. 2)
      • 2. Singh, R.: ‘Medicinal plants: a review’, J. Plant Sci., 2015, 3, pp. 5055.
    3. 3)
      • 3. Yatoo, M.I., Dimri, U., Gopalakrishnan, A., et al: ‘Beneficial health applications and medicinal values of Pedicularis plants: a review’, Biomed. Pharmacother., 2017, 95, pp. 13011313.
    4. 4)
      • 4. Pereira, J.A., Ivo, O., Sousa, A., et al: ‘Walnut (Juglans regia L.) leaves: phenolic compounds,antibacterial activity and antioxidant potential of different cultivars’, Food Chem. Toxicol., 2007, 45, pp. 22872295.
    5. 5)
      • 5. Rostami-Vartooni, A., Nasrollahzadeh, M., Alizadeh, M.: ‘Green synthesis of perlite supported silver nanoparticles using Hamamelis virginiana leaf extract and investigation of its catalytic activity for the reduction of 4-nitrophenol and Congo Red’, J. Alloys Compd., 2016, 680, pp. 309314.
    6. 6)
      • 6. Rostami-Vartooni, A., Nasrollahzadeh, M., Alizadeh, M.: ‘Green synthesis of seashell supported silver nanoparticles using Bunium persicum seeds extract: application of the particles for catalytic reduction of organic dyes’, J. Colloid Interf. Sci., 2016, 470, pp. 268275.
    7. 7)
      • 7. Rostami-Vartooni, A., Nasrollahzadeh, M., Salavati-Niasari, M., et al: ‘Photocatalytic degradation of azo dyes by titanium dioxide supported silver nanoparticles prepared by a green method using Carpobrotus acinaciformis extract’, J. Alloys Compd., 2016, 689, pp. 1520.
    8. 8)
      • 8. Kolobova, E., Pestryakov, A., Shemeryankina, A., et al: ‘Formation of silver active states in Ag/ZSM-5 catalysts for CO oxidation’, Fuel, 2014, 138, pp. 6571.
    9. 9)
      • 9. Tajbakhsh, M., Alinezhad, H., Nasrollahzadeh, M., et al: ‘Green synthesis of the Ag/HZSM-5 nanocomposite by using Euphorbia heterophylla leaf extract: a recoverable catalyst for reduction of organic dyes’, J. Alloys Compd., 2016, 685, pp. 258265.
    10. 10)
      • 10. Nasrollahzadeh, M., Sajadi, S.M., Rostami-Vartooni, A., et al: ‘Green synthesis of Pd/Fe3O4 nanoparticles using Euphorbiacondylocarpa M. bieb root extract and their catalytic applications as magnetically recoverable and stable recyclable catalysts for the phosphine-free Sonogashira and Suzuki coupling reactions’, J. Mol. Catal. A: Chem., 2015, 396, pp. 3139.
    11. 11)
      • 11. Nasrollahzadeh, M., Issaabadi, Z., Safari, R.: Synthesis, characterization and application of Fe3O4@SiO2 nanoparticles supported palladium(II) complex as a magnetically catalyst for the reduction of 2,4-dinitrophenylhydrazine, 4-nitrophenol and chromium(VI): a combined theoretical (DFT) and experimental study’, Sep. Purif. Technol., 2019, 2019, pp. 136144.
    12. 12)
      • 12. Sang, S., Chang, F., Liu, Z., et al: ‘Difference of ZSM-5 zeolites synthesized with various templates’, Catal. Today, 2004, 93–95, pp. 729734.
    13. 13)
      • 13. Rostami-Vartooni, A.: ‘Green synthesis of CuO nanoparticles loaded on the seashell surface using Rumex crispus seeds extract and its catalytic applications for reduction of dyes’, IET Nanobiotechnol.., 2017, 11, pp. 349359.
    14. 14)
      • 14. Bordbar, M., Negahdar, N., Nasrollahzadeh, M.: ‘Melissa officinalis L. leaf extract assisted green synthesis of CuO/ZnO nanocomposite for the reduction of 4-nitrophenol and rhodamine B’, Sep. Purif. Technol., 2018, 191, pp. 295300.
    15. 15)
      • 15. Kirschhock, C.E.A., Ravishankar, R., Verspeurt, F., et al: ‘Mechanism of transformation of precursors into nanoslabs in the early stages of MFI and MEL zeolite formation from TPAOH−TEOS−H2O and TBAOH–TEOS–H2O mixtures’, J. Phys. Chem. B, 1999, 103, pp. 49654971.
    16. 16)
      • 16. Cheng, Y., Wang, L.J., Li, J.S., et al: ‘Preparation and characterization of nanosized ZSM-5 zeolites in the absence of organic template’, Mater. Lett., 2005, 59, pp. 34273430.
    17. 17)
      • 17. Lercher, J.A., Grundling, C., Eder-Mirth, G.: Infrared studies of the surface acidity of oxides and zeolites using adsorbed probe molecules’, Catal. Today, 1996, 27, pp. 353376.
    18. 18)
      • 18. Sternik, D., Majdan, M., Deryło-Marczewska, A., et al: ‘Influence of basic red 1 dye adsorption on thermal stability of Na-clinoptilolite and Na-bentonite’, J. Therm. Anal. Calorim., 2011, 103, pp. 607615.
    19. 19)
      • 19. Xu, Z., Ding, L., Long, Y., et al: ‘Preparation and evaluation of superparamagnetic surface molecularly imprinted polymer nanoparticles for selective extraction of bisphenol A in packed food’, Anal. Methods, 2011, 3, pp. 17371744.
    20. 20)
      • 20. Feng, X., Lou, X.: ‘The effect of surfactants-bound magnetite (Fe3O4) on the photocatalytic properties of the heterogeneous magnetic zinc oxides nanoparticles’, Sep. Purif. Technol., 2015, 147, pp. 266275.
    21. 21)
      • 21. Nasrollahzadeh, M., Sajjadi, M., Khonakdar, H.A.: ‘Synthesis and characterization of novel Cu(II) complex coated Fe3O4@SiO2 nanoparticles for catalytic performance’, J. Mol. Struct, 2018, 1161, pp. 453463.
    22. 22)
      • 22. Zhang, L., He, R., Gu, H.C.: ‘Oleic acid coating on the monodisperse magnetite nanoparticles’, Appl. Surf. Sci., 2006, 253, pp. 26112617.
    23. 23)
      • 23. Hassaninejad-Darzi, S.K.: ‘Fabrication of a non-enzymatic Ni(II) loaded ZSM-5 nanozeolite and multi-walled carbon nanotubes paste electrode as a glucose electrochemical sensor’, RSC Adv., 2015, 5, pp. 105707105718.
    24. 24)
      • 24. Rutkowska, M., Macina, D., Piwowarska, Z., et al: ‘Hierarchically structured ZSM-5 obtained by optimized mesotemplate-free method as active catalyst for methanol to DME conversion’, Catal. Sci. Technol., 2016, 6, pp. 48494862.
    25. 25)
      • 25. Fu, X., Liu, J., He, X.: ‘A facile preparation method for single-hole hollow Fe3O4@SiO2 microspheres’, Colloids Surf. A, Physicochem. Eng. Aspects, 2014, 453, pp. 101108.
    26. 26)
      • 26. Chen, Z.L., Sun, Y., Huang, P., et al: ‘Studies on preparation of photosensitizer loaded magnetic silica nanoparticles and their anti-tumor effects for targeting photodynamic therapy’, Nanoscale Res. Lett., 2009, 4, pp. 400408.
    27. 27)
      • 27. Hao, D., Xuefen, C., Liangdong, Q., et al: ‘Fabrication, characterization and properties of superparamagnetic reduced graphene oxide/Fe3O4 hollow sphere nanocomposites’, Rare Metal Mater. Eng., 2016, 45, pp. 16691673.
    28. 28)
      • 28. Khairnar, S.D., Patil, M.R., Shrivastava, V.S.: ‘Hydrothermally synthesized nanocrystalline Nb2O5 and its visible-light photocatalytic activity for degradation of Congo red and methylene blue’, Iran. J. Catal., 2018, 8, pp. 143150.
    29. 29)
      • 29. Zayed, M.F., Eisa, W.H., Abdel-Moneam, Y.K., et al: ‘Ziziphus spinachristi based bio-synthesis of Ag nanoparticles’, J. Ind. Eng. Chem., 2015, 23, pp. 5056.
    30. 30)
      • 30. Zayed, M.F., Eisa, W.H.: ‘Phoenix dactylifera L. leaf extract phytosynthesized gold nanoparticles; controlled synthesis and catalytic activity’, Spectrochim. Acta A, 2014, 121, pp. 238244.
    31. 31)
      • 31. He, R., Wang, Y.-C., Wang, X., et al: ‘Facile synthesis of pentacle gold–copper alloy nanocrystals and their plasmonic and catalytic properties’, Nature Commun., 2014, 5, pp. 43274337.
    32. 32)
      • 32. Deka, P., Deka, R.C., Bharali, P.: ‘In situ generated copper nanoparticle catalyzed reduction of 4-nitrophenol’, New J. Chem., 2014, 38, pp. 17891793.
    33. 33)
      • 33. Wu, K.L., Yu, R., Wei, X.W.: ‘Monodispersed FeNi2 alloy nanostructures: solvothermal synthesis, magnetic properties and size-dependent catalytic activity’, Cryst. Eng. Commun., 2012, 14, pp. 76267632.
    34. 34)
      • 34. Lin, F.-H., Doong, R.-A.: ‘Bifunctional Au–Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction’, J. Phys. Chem. C, 2011, 115, pp. 65916598.
    35. 35)
      • 35. Li, Y., Cao, Y., Xie, J., et al: ‘Facile solid-state synthesis of Ag/graphene oxide nanocomposites as highly active and stable catalyst for the reduction of 4-nitrophenol’, Catal. Commun., 2015, 58, pp. 2125.
    36. 36)
      • 36. Thu, T.V., Ko, P.J., Nguyen, T.V., et al: ‘Green synthesis of reduced graphene oxide/Fe3O4/Ag ternary nanohybrid and its application as magnetically recoverable catalyst in the reduction of 4-nitrophenol’, Appl. Organometal. Chem., 2017, 31, pp. 37813790.
    37. 37)
      • 37. Saikia, P., Miah, A.T., Das, P.P.: ‘Highly efficient catalytic reductive degradation of various organic dyes by Au/CeO2–TiO2 nano-hybrid’, J. Chem. Sci., 2017, 129, pp. 8193.
    38. 38)
      • 38. Ghosh, B.K., Hazra, S., Naik, B., et al: ‘Preparation of Cu nanoparticle loaded SBA-15 and their excellent catalytic activity in reduction of variety of dyes’, Powder Technol.., 2015, 269, pp. 371378.
    39. 39)
      • 39. Zainal Abidin, A., Abu Bakar, N.H.H, Ng, E.P., et al: ‘Rapid degradation of methyl orange by Ag doped zeolite X in the presence of borohydride’, J. Taibah Univ. Sci., 2017, 11, pp. 10701079.

Related content

This is a required field
Please enter a valid email address