access icon free Comparative antileishmanial efficacy of the biosynthesised ZnO NPs from genus Verbena

This study describes ZnO NPs biosynthesis using leaf extracts of Verbena officinalis and Verbena tenuisecta. The extracts serve as natural reducing, capping and stabilization facilitators. Plant extracts phytochemical analysis, revealed that V. officinalis showed higher total phenolic and flavonoid content (22.12 and 6.38 mg g −1 DW) as compared to V. tennuisecta (12.18 and 2.7 mg g −1 DW). ZnO NPs were characterised by ultraviolet–visible spectroscopy, Fourier transform infrared, X-ray diffraction, scanning electron microscope, transmission electron microscopy (TEM) and energy dispersive X-ray. TEM analysis of ZnO NPs reveals rod and flower shapes and were in the range of 65–75 and 14–31 nm, for V. tenuisecta and V. officinalis, respectively. Bio-potential of ZnO NPs was examined through their leishmanicidal potential against Leishmania tropica. ZnO NPs showed potent leishmanicidal activity with 250 µg ml−1 being the most potent concentration. V. officinalis mediated ZnO NPs showed more potent leishmanicidal activity compared to V. tenuisecta mediated ZnO NPs due to their smaller size and increased phenolics doped onto its surface. These results can be a step forward towards the development of novel compounds that can efficiently replace the current medication schemes for leishmaniasis treatment.

Inspec keywords: Fourier transform infrared spectra; X-ray diffraction; nanofabrication; visible spectra; nanostructured materials; health and safety; particle size; renewable materials; antibacterial activity; ultraviolet spectra; transmission electron microscopy; microorganisms; zinc compounds; nanoparticles; drugs; nanomedicine; scanning electron microscopy; diseases; X-ray chemical analysis

Other keywords: Verbena officinales; X-ray diffraction; ZnO nanoparticles synthesis; natural reducing stabilisation facilitators; particle size; stabilisation facilitator; capping facilitator; flavonoid content; medication scheme; size 14.0 nm to 31.0 nm; scanning electron microscopy; phytochemical analysis; leishmaniasis treatment; leaf extracts; energy dispersive X-ray analysis; ultraviolet–visible spectroscopy; Fourier transform infrared spectroscopy; antileishmanial efficacy; phenolic content; ZnO; size 65.0 nm to 75.0 nm; transmission electron microscopy; Verbena tennuisecta

Subjects: Nanotechnology applications in biomedicine; Other methods of nanofabrication; Pharmaceutical industry; Testing; Engineering materials; Health and safety aspects; Products and commodities; Nanofabrication

References

    1. 1)
      • 24. Mok, K., Juraskova, I., Friedlander, M.: ‘The impact of aromatase inhibitors on sexual functioning: current knowledge and future research directions’, Breast, 2008, 17, (5), pp. 436440.
    2. 2)
      • 39. Zia-Ul-Haq, M., Shahid, S.A., Ahmad, S., et al: Antioxidant potential of various parts of Ferula assafoetida L.J. Med. Plants Res., 2012, 6, pp. 32543258.
    3. 3)
      • 19. Gnanasangeetha, D., Saralathambavani, D.: ‘One pot synthesis of zinc oxide nanoparticles via chemical and green method’, Res. J Mater Sci., 2013, 1, (7), pp. 18, ISSN 2320, 6055.
    4. 4)
      • 9. Sharma, D., et al: ‘Biosynthesis of ZnO nanoparticles using Jacaranda mimosifolia flowers extract: synergistic antibacterial activity and molecular simulated facet specific adsorption studies’, J. Photochem. Photobiol. B, 2016, 162, pp. 199207.
    5. 5)
      • 47. Fu, L., Fu, Z.: ‘Plectranthus amboinicus leaf extract-assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity’, Ceram. Int., 2015, 41, (2), pp. 24922496.
    6. 6)
      • 11. Chaudhary, A., Gupta, A., Khan, S., et al: ‘Morphological effect of gold nanoparticles on the adsorption of bovine serum albumin’, Phys. Chem. Chem. Phys., 2014, 16, (38), pp. 2047120482.
    7. 7)
      • 17. Sharma, D., et al: ‘Green synthesis, characterization and electrochemical sensing of silymarin by ZnO nanoparticles: experimental and DFT studies’, J. Electroanal. Chem., 2018, 808, pp. 160172.
    8. 8)
      • 36. Li, Y., Ishibashi, M., Satake, M., et al: ‘Sterol and triterpenoid constituents of Verbena littoralis with NGF-potentiating activity’, J. Nat. Prod., 2003, 66, (5), pp. 696698.
    9. 9)
      • 27. Calvo, M.I., Vilalta, N., San Julián, A., et al: ‘Anti-inflammatory activity of leaf extract of Verbena officinalis L.’, Phytomedicine, 1998, 5, (6), pp. 465467.
    10. 10)
      • 38. Singleton, V.L., Rossi, J.A.: ‘Colourimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents’, Am. J. Enol. Vitic., 1965, 16, (3), pp. 144158.
    11. 11)
      • 28. Abdelshafeek, K.A., Elgattar, A.A., Zarkoon, A.H., et al: ‘Investigation of the volatile oils, lipid constituents and biological activity of Ballota andreuzziana, Teucrium zanonii and Verbena tenuisecta in Libya’, Asian Pac. J. Trop. Med., 2010, 3, (8), pp. 594601.
    12. 12)
      • 13. Thema, F.T., Manikandan, E., Dhlamini, M.S., et al: ‘Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract’, Mater. Lett., 2015, 161, pp. 124127.
    13. 13)
      • 23. Akanmu, M.A., Honda, K., Inoue, S.: ‘Hypnotic effects of total aqueous extracts of Vervain hastata (Verbenaceae) in rats’, Psychiatry Clin. J. Mol. Diagnosticshe J. Phys. Chem. C, 2002, 56, (3), pp. 309310.
    14. 14)
      • 54. Murray, H.W.: ‘Susceptibility of Leishmania to oxygen intermediates and killing by normal macrophages’, J. Exp. Med., 1981, 153, (5), pp. 13021315.
    15. 15)
      • 16. Ramesh, M., Anbuvannan, M., Viruthagiri, G.: ‘Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity’, Spectrochim. Acta A, 2015, 136, pp. 864870.
    16. 16)
      • 18. Christensen, L., Vivekanandhan, S., Misra, M., et al: ‘Biosynthesis of silver nanoparticles using Murraya koenigii (curry leaf): an investigation on the effect of broth concentration in reduction mechanism and particle size’, Adv Mat Lett., 2011, 2, (6), pp. 429434.
    17. 17)
      • 40. Britto, J.D.., Sebastian, S.R..: ‘Biosynthesis silver nanoparticles and its antibacterial activity against human pathogens’, Int. J. Pharm. Sci., 2012, 5, pp. 257259.
    18. 18)
      • 29. Castro-Gamboa, I., Castro, O.: ‘Iridoids from the aerial parts of Verbena littoralis (Verbenaceae)’, Phytochemistry, 2004, 65, (16), pp. 23692372.
    19. 19)
      • 22. Müller, A., Ganzera, M., Stuppner, H.: ‘Analysis of the aerial parts of Verbena officinalis L. by micellar electrokinetic capillary chromatography’, Chromatographia, 2004, 60, (3), pp. 193197.
    20. 20)
      • 35. Li, Y.S., Matsunaga, K., Kato, R., et al: ‘Verbenachalcone, a novel dimeric dihydrochalcone with potentiating activity on nerve growth factor-action from Verbena littoralis’, J. Nat. Prod., 2001, 64, (6), pp. 806808.
    21. 21)
      • 30. Calvo, M.I.: ‘Anti-inflammatory and analgesic activity of the topical preparation of Verbena officinalis L.’, J. Ethnopharmacol., 2006, 107, (3), pp. 380382.
    22. 22)
      • 25. Herna′ndez, N.E., Tereschuk, M.L., Abdala, L.R.: ‘Antimicrobial activity of flavonoids in medicinal plants from Tafi del Valle (Tucuman, Argentina)’, J. Ethnopharmacol., 2000, 73, (1), pp. 317322.
    23. 23)
      • 15. Selvakumar, R., Seethalakshmi, N., Thavamani, P., et al: ‘Recent advances in the synthesis of inorganic nano/microstructures using microbial biotemplates and their applications’, RSC Adv., 2014, 4, (94), pp. 5215652169.
    24. 24)
      • 41. Anjum, S., Abbasi, B.H.: ‘Thidiazuron-enhanced biosynthesis and antimicrobial efficacy of silver nanoparticles via improving phytochemical reducing potential in callus culture of Linum usitatissimum L.’, Int. J. Nanomed., 2016, 11, p. 715.
    25. 25)
      • 34. Kou, W.Z., Yang, J., Yang, Q.H., et al: ‘Study on in-vivo anti-tumor activity of Verbena officinalis extract’, Afr. J. Tradit. Complement. Altern. Med., 2013, 10, (3), pp. 512517.
    26. 26)
      • 48. Arokiyaraj, S., Arasu, M.V., Vincent, S., et al: ‘Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L. and its antibacterial and cytotoxic effects: an in vitro study’, Int. J. Nanomed., 2014, 9, p. 379.
    27. 27)
      • 52. Banumathi, B., Malaikozhundan, B., Vaseeharan, B.: ‘In vitro acaricidal activity of ethnoveterinary plants and green synthesis of zinc oxide nanoparticles against Rhipicephalus (Boophilus) microplus’, Vet. Parasitol., 2016, 216, pp. 93100.
    28. 28)
      • 2. Hemmer, C.J., Frimmel, S., Kinzelbach, R., et al: ‘Globale Erwärmung: Wegbereiter für tropische Infektionskrankheiten in Deutschland?’, Deutsche Medizinische Wochenschrift, 2007, 132, (48), pp. 25832589.
    29. 29)
      • 33. Khaled, A.A., Adnan, A.E., Salwa, M.N.: ‘Some pharmacochemical investigations on Verbena tenuisecta’, Res. J. Agric. Biol. Sci., 2009, 5, (5), pp. 649659.
    30. 30)
      • 14. Zak, A.K., Razali, R., Majid, W.A., et al: ‘Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles’, Int. J. Nanomed., 2011, 6, p. 1399.
    31. 31)
      • 7. Nohynek, G.J., Lademann, J., Ribaud, C., et al: ‘Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety’, Crit. Rev. Toxicol., 2007, 37, (3), pp. 251277.
    32. 32)
      • 10. Mclaren, A., Valdes-Solis, T., Li, G., et al: ‘Shape and size effects of ZnO nanocrystals on photocatalytic activity’, J. Am. Chem. Soc., 2009, 131, (35), pp. 1254012541.
    33. 33)
      • 8. Sangeetha, G., Rajeshwari, S., Venckatesh, R.: ‘Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties’, Mater. Res. Bull., 2011, 46, (12), pp. 25602566.
    34. 34)
      • 46. Gnanasangeetha, D., Saralathambavani, D.: ‘Novel synthesis and characterization of ZnO nanoparticles by Ocimum sanctum’, Asian Acad. Res. J. Multidiscip., 2013, 1, (12), pp. 164180.
    35. 35)
      • 3. Allahverdiyev, A.M., Abamor, E.S., Bagirova, M., et al: ‘Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light’, Int. J. Nanomed., 2011, 6, p. 2705.
    36. 36)
      • 12. Ameen, S., Akhtar, M.S., Shin, H.S.: ‘Highly dense ZnO nanowhiskers for the low level detection of p-hydroquinone’, Mater. Lett., 2015, 155, pp. 8286.
    37. 37)
      • 4. Rai, M., Yadav, A., Gade, A.: ‘Silver nanoparticles as a new generation of antimicrobials’, Biotechnol. Adv., 2009, 27, (1), pp. 7683.
    38. 38)
      • 21. Li, Y., Ishibashi, M., Satake, M., et al: ‘A new iridoid glycoside with nerve growth factor-potentiating activity, gelsemiol 6′-trans-caffeoyl-1-glucoside, from Verbena littoralis’, Chem. Pharm. Bull., 2003, 51, (9), pp. 11031105.
    39. 39)
      • 37. Toki, K., Saito, N., Terahara, N., et al: ‘Pelargonidin 3-glucoside-5-acetylglucoside in Verbena flowers’, Phytochemistry, 1995, 40, (3), pp. 939940.
    40. 40)
      • 53. Ahmad, A., Wei, Y., Syed, F., et al: ‘Isatis tinctoria mediated synthesis of amphotericin B-bound silver nanoparticles with enhanced photoinduced antileishmanial activity: a novel green approach’, J. Photochem. Photobiol. B Biol., 2016, 161, pp. 1724.
    41. 41)
      • 6. Nohynek, G.J., Dufour, E.K., Roberts, M.S.: ‘Nanotechnology, cosmetics and the skin: is there a health risk?’, Skin Pharmacol. Physiol., 2008, 21, (3), pp. 136149.
    42. 42)
      • 5. Elumalai, K., Velmurugan, S., Ravi, S., et al: ‘RETRACTED: green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity’, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 2015, pp. 158164.
    43. 43)
      • 51. Li, Y., Zhang, W., Niu, J., et al: ‘Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles’, ACS Nano, 2012, 6, (6), pp. 51645173.
    44. 44)
      • 50. Jamdagni, P., Khatri, P., Rana, J.S.: ‘Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity’, J. King Saud Univ.-Sci., 2016, 30, pp. 168175.
    45. 45)
      • 31. Hänsel, R., Kallmann, S.: ‘Identitätsprüfung von Verbenae herba: Verbascosid als Leitstoff’, Arch. Pharm., 1986, 319, (3), pp. 227230.
    46. 46)
      • 55. Bibi, Y., Nisa, S., Chaudhary, F.M., et al: ‘Antibacterial activity of some selected medicinal plants of Pakistan’, BMC Complement. Altern. Med., 2011, 11, (1), p. 52.
    47. 47)
      • 45. Smitha, S.L., Nissamudeen, K.M., Philip, D., et al: ‘Studies on surface plasmon resonance and photoluminescence of silver nanoparticles’, Spectrochim. Acta A, 2008, 71, (1), pp. 186190.
    48. 48)
      • 42. Jha, A.K., Prasad, K.: ‘Green synthesis of silver nanoparticles and its activity on SiHa cervical cancer cell line’, Adv. Mater. Lett., 2014, 5, pp. 501505.
    49. 49)
      • 44. Geetha, A., Sakthivel, R., Mallika, J.: ‘A single pot green synthesis of ZnO nanoparticles using aqueous gum exudates of Azadirachta indica and its antifungal activity’, Int. Res. J. Eng. Technol., 2016, 3, (9), pp. 271316.
    50. 50)
      • 26. Deepak, M., Handa, S.S.: ‘Antiinflammatory activity and chemical composition of extracts of Verbena officinalis’, Phytother. Res., 2000, 14, (6), pp. 463465.
    51. 51)
      • 43. Soosen Samuel, M., Bose, L., George, K.C.: ‘Optical properties of ZnO nanoparticles’, Acad. Rev., 2009, 2, pp. 5765.
    52. 52)
      • 1. Allahverdiyev, A.M., Abamor, E.S., Bagirova, M., et al: ‘Investigation of antileishmanial activities of Tio2@Ag nanoparticles on biological properties of L. tropica and L. infantum parasites, in vitro’, Exp. Parasitol., 2013, 135, (1), pp. 5563.
    53. 53)
      • 32. Chen, G.M., Zhang, J.Y., Zhang, X.P., et al: ‘Study on chemical composition of flavonoids in Verbena officinalis’, J. Chin. Med. Mater., 2006, 29, (7), pp. 677678.
    54. 54)
      • 49. Elumalai, K., Velmurugan, S., Ravi, S., et al: ‘RETRACTED: facile, eco-friendly and template free photosynthesis of cauliflower like ZnO nanoparticles using leaf extract of Tamarindus indica (L.) and its biological evolution of antibacterial and antifungal activities’, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 2015, 136, pp. 10521057.
    55. 55)
      • 20. Shamsardakani, M.R., Mosaddegh, M., Shafaati, A.: ‘Volatile constituents from the aerial part of Verbena officinalis L. (Vervain)’, Iran. J. Pharm. Res., 2010, 2, (1), pp. 3942.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5076
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5076
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading