Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Autoclave-assisted synthesis of AgNPs in Z. officinale extract and assessment of their cytotoxicity, antibacterial and antioxidant activities

In this study, the authors synthesised silver nanoparticles (AgNPs) using autoclave as a simple, unique and eco-friendly approach. The effect of Zingiber officinale extract was evaluated as a reducing and stabiliser agent. According to transmission electron microscopy results, the AgNPs were in the spherical shape with a particle size of ∼17 nm. The biomedical properties of AgNPs as antibacterial agents and free radical scavenging activity were estimated. Synthesised AgNPs showed significant 1,1-diphenyl-2-picryl-hydrazyl free radical scavenging. Strong bactericidal activity was shown by the AgNPs on Gram-positive and Gram-negative bacteria. A maximum inhibition zone of ∼14 mm was obtained for epidermidis at a concentration of 60 μg/ml for sample fabricated at 24 h. The AgNPs also showed a significant cytotoxic effect against MCF-7 breast cancer cell lines with an half maximal inhibitory concentration value of 62 μg/ml in 24 h by the MTT assay. It could be concluded that Z. officinale extract can be used effectively in the production of potential antioxidant and antimicrobial AgNPs for commercial application.

References

    1. 1)
      • 35. Reddy, N.J., Vali, D.N., Rani, M., et al: ‘Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit’, Mater. Sci. Eng. C, 2014, 34, pp. 115122.
    2. 2)
      • 20. Mollaei, S., Habibi, B., Amani Ghadim, A., et al: ‘A green approach for synthesis of silver nanoparticles using Lithospermum officinale root extract and evaluation of their antioxidant activity’, J. Particle Sci. Technol., 2018, 3, (4), pp. 187195.
    3. 3)
      • 70. Naz, S., Shahzad, H., Ali, A., et al: ‘Nanomaterials as nanocarriers: a critical assessment why these are multi-chore vanquisher in breast cancer treatment’, Artif. Cells Nanomed. Biotechnol., 2018, 46, (5), pp. 118.
    4. 4)
      • 14. Fayaz, A.M., Balaji, K., Girilal, M., et al: ‘Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria’, Nanomed. Nanotechnol. Biol. Med., 2010, 6, (1), pp. 103109.
    5. 5)
      • 69. Shavandi, Z., Ghazanfari, T., Moghaddam, K.N.: ‘In vitro toxicity of silver nanoparticles on murine peritoneal macrophages’, Immunopharmacol. Immunotoxicol., 2011, 33, (1), pp. 135140.
    6. 6)
      • 63. Mohammadi, G., Valizadeh, H., Barzegar-Jalali, M., et al: ‘Development of Azithromycin–Plga nanoparticles: physicochemical characterization and antibacterial effect against Salmonella typhi’, Colloids Surf. B, Biointerfaces, 2010, 80, (1), pp. 3439.
    7. 7)
      • 15. Govindaraju, K., Krishnamoorthy, K., Alsagaby, S.A., et al: ‘Green synthesis of silver nanoparticles for selective toxicity towards cancer cells’, IET Nanobiotechnol., 2015, 9, (6), pp. 325330.
    8. 8)
      • 11. Braun, G.B., Friman, T., Pang, H.-B., et al: ‘Etchable plasmonic nanoparticle probes to image and quantify cellular internalization’, Nature Mater., 2014, 13, (9), pp. 904911.
    9. 9)
      • 48. Moghaddam, A.B., Moniri, M., Azizi, S., et al: ‘Biosynthesis of ZnO nanoparticles by a new Pichia kudriavzevii yeast strain and evaluation of their antimicrobial and antioxidant activities’, Molecules, 2017, 22, (6), p. 872.
    10. 10)
      • 12. Zia, M., Gul, S., Akhtar, J., et al: ‘Green synthesis of silver nanoparticles from grape and tomato juices and evaluation of biological activities’, IET Nanobiotechnol., 2016, 11, (2), pp. 193199.
    11. 11)
      • 34. Rajan, A., Vilas, V., Philip, D.: ‘Catalytic and antioxidant properties of biogenic silver nanoparticles synthesized using areca catechu nut’, J. Mol. Liq., 2015, 207, pp. 231236.
    12. 12)
      • 59. Pal, S., Tak, Y.K., Song, J.M.: ‘Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli’, Appl. Environ. Microbiol., 2007, 73, (6), pp. 17121720.
    13. 13)
      • 39. Velmurugan, P., Anbalagan, K., Manosathyadevan, M., et al: ‘Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens’, Bioprocess Biosyst. Eng., 2014, 37, (10), pp. 19351943.
    14. 14)
      • 31. Abdullah, S., Abidin, S.A.Z., Murad, N.A., et al: ‘Ginger extract (Zingiber officinale) triggers apoptosis and G0/G1 cells arrest in Hct 116 and Ht 29 colon cancer cell lines’, Afr. J. Biochem. Res., 2010, 4, (5), pp. 134142.
    15. 15)
      • 54. Chudasama, B., Vala, A.K., Andhariya, N., et al: ‘Enhanced antibacterial activity of bifunctional Fe3O4–Ag core–shell nanostructures’, Nano Res., 2009, 2, (12), pp. 955965.
    16. 16)
      • 68. Gurunathan, S., Han, J.W., Eppakayala, V., et al: ‘Cytotoxicity of biologically synthesized silver nanoparticles in Mda-Mb-231 human breast cancer cells’, BioMed Res. Int., 2013, 2013, 10 pages.
    17. 17)
      • 19. Narayanan, K.B., Sakthivel, N.: ‘Biological synthesis of metal nanoparticles by microbes’, Adv. Colloid Interface Sci., 2010, 156, (1), pp. 113.
    18. 18)
      • 37. Kumar, K.P., Paul, W., Sharma, C.P.: ‘Green synthesis of silver nanoparticles with Zingiber officinale extract and study of its blood compatibility’, Bionanoscience, 2012, 2, (3), pp. 144152.
    19. 19)
      • 61. Van Dong, P., Ha, C.H., Kasbohm, J.: ‘Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles’, Int. Nano Lett., 2012, 2, (1), p. 9.
    20. 20)
      • 1. Gou, Y., Zhou, R., Ye, X., et al: ‘Highly efficient in vitro biosynthesis of silver nanoparticles using Lysinibacillus sphaericus Mr-1 and their characterization’, Sci. Technol. Adv. Mater., 2015, 16, (1), p. 015004.
    21. 21)
      • 5. Sibbald, R.G., Contreras-Ruiz, J., Coutts, P., et al: ‘Bacteriology, inflammation, and healing: a study of nanocrystalline silver dressings in chronic venous leg ulcers’, Adv. Skin Wound Care, 2007, 20, (10), pp. 549558.
    22. 22)
      • 56. Rai, M., Yadav, A., Gade, A.: ‘Silver nanoparticles as a new generation of antimicrobials’, Biotechnol. Adv., 2009, 27, (1), pp. 7683.
    23. 23)
      • 60. Martinez-Castanon, G., Nino-Martinez, N., Martinez-Gutierrez, F., et al: ‘Synthesis and antibacterial activity of silver nanoparticles with different sizes’, J. Nanoparticle Res., 2008, 10, (8), pp. 13431348.
    24. 24)
      • 49. Sonavane, G., Tomoda, K., Makino, K.: ‘Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size’, Colloids Surf. B, Biointerfaces, 2008, 66, (2), pp. 274280.
    25. 25)
      • 10. Bayston, R., Ashraf, W., Fisher, L.: ‘Prevention of infection in neurosurgery: role of ‘antimicrobial’ catheters’, J. Hosp. Infect., 2007, 65, pp. 3942.
    26. 26)
      • 66. Kumar, B., Smita, K., Cumbal, L., et al: ‘Synthesis of silver nanoparticles using Sacha inchi (Plukenetia volubilis L.) leaf extracts’, Saudi J. Biol. Sci., 2014, 21, (6), pp. 605609.
    27. 27)
      • 65. Kumar, B., Smita, K., Seqqat, R., et al: ‘In vitro evaluation of silver nanoparticles cytotoxicity on hepatic cancer (Hep-G2) cell line and their antioxidant activity: green approach for fabrication and application’, J. Photochem. Photobiol. B, Biol., 2016, 159, pp. 813.
    28. 28)
      • 30. Simon-Brown, K., Solval, K.M., Chotiko, A., et al: ‘Microencapsulation of ginger (Zingiber officinale) extract by spray drying technology’, LWT, Food Sci. Technol., 2016, 70, pp. 119125.
    29. 29)
      • 40. Sharma, V.K., Yngard, R.A., Lin, Y.: ‘Silver nanoparticles: green synthesis and their antimicrobial activities’, Adv. Colloid Interface Sci., 2009, 145, (1), pp. 8396.
    30. 30)
      • 42. Kora, A.J., Sashidhar, R.B., Arunachalam, J.: ‘Gum kondagogu (Cochlospermum gossypium): a template for the green synthesis and stabilization of silver nanoparticles with antibacterial application’, Carbohydr. Polym., 2010, 82, (3), pp. 670679.
    31. 31)
      • 27. Wu, D., Cederbaum, A.I.: ‘Alcohol, oxidative stress, and free radical damage’, Alcohol Res. Health, 2003, 27, pp. 277284.
    32. 32)
      • 36. Dong, X., Ji, X., Wu, H., et al: ‘Shape control of silver nanoparticles by stepwise citrate reduction’, J. Phys. Chem. C, 2009, 113, (16), pp. 65736576.
    33. 33)
      • 26. Banerjee, J., Narendhirakannan, R.: ‘Biosynthesis of silver nanoparticles from Syzygium cumini (L.) seed extract and evaluation of their in vitro antioxidant activities’, Dig. J. Nanomater. Biostruct., 2011, 6, (3), pp. 961968.
    34. 34)
      • 18. Priyadarshini, S., Gopinath, V., Meera Priyadharsshini, N., et al: ‘Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application’, Colloids Surf. B, Biointerfaces, 2013, 102, (Supplement C), pp. 232237.
    35. 35)
      • 17. Rajesh, V., Sophiya, J., Jacob, S., et al: ‘Biosynthesis of silver nanoparticles using Diospyros ferrea (Willd.) bakh. Leaves and evaluation of its antioxidant, anti-inflammatory, antimicrobial and anticancer activity’, J. Bionanosci., 2017, 11, (1), pp. 2433.
    36. 36)
      • 64. Reddy, N.J., Nagoor Vali, D., Rani, M., et al: ‘Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit’, Mater. Sci. Eng. C, 2014, 34, (Supplement C), pp. 115122.
    37. 37)
      • 55. Chen, S.F., Li, J.P., Qian, K., et al: ‘Large scale photochemical synthesis of M@ TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, co oxidation performance, and antibacterial effect’, Nano Res., 2010, 3, (4), pp. 244255.
    38. 38)
      • 25. Parveen, M., Ahmad, F., Malla, A.M., et al: ‘Microwave-assisted green synthesis of silver nanoparticles from Fraxinus excelsior leaf extract and its antioxidant assay’, Appl. Nanosci., 2016, 6, (2), pp. 267276.
    39. 39)
      • 21. Jain, D., Daima, H.K., Kachhwaha, S., et al: ‘Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their antimicrobial activities’, Dig. J. Nanomater. Biostruct., 2009, 4, (3), pp. 557563.
    40. 40)
      • 7. Huang, Y., Li, X., Liao, Z., et al: ‘A randomized comparative trial between Acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis’, Burns, 2007, 33, (2), pp. 161166.
    41. 41)
      • 57. Kharat, S.N., Mendhulkar, V.D.: ‘Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract’, Mater. Sci. Eng. C, 2016, 62, pp. 719724.
    42. 42)
      • 51. Ramaswamy, S.V.P., Sivaraj, R., Mary Suji, C., et al: ‘Role of biogenic synthesis of biocompatible nano gold particles and their potential applications – a review’, J. Pharm. Chem. Biol. Sci., 2015, 3, (1), pp. 104113.
    43. 43)
      • 43. Vigneshwaran, N., Nachane, R.P., Balasubramanya, R.H., et al: ‘A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch’, Carbohydr. Res., 2006, 341, (12), pp. 20122018.
    44. 44)
      • 32. Kalantari, K., Moniri, M., Boroumand Moghaddam, A., et al: ‘A review of the biomedical applications of zerumbone and the techniques for its extraction from ginger rhizomes’, Molecules, 2017, 22, (10), p. 1645.
    45. 45)
      • 24. Ahmed, S., Ahmad, M., Swami, B.L., et al: ‘Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract’, J. Radiat. Res. Appl. Sci., 2016, 9, (1), pp. 17.
    46. 46)
      • 44. Pani, A., Lee, J.H., Yun, S.-I.: ‘Autoclave mediated one-pot-one-minute synthesis of AgNPs and Au–Ag nanocomposite from Melia azedarach bark extract with antimicrobial activity against food pathogens’, Chem. Cent. J., 2016, 10, (1), p. 15.
    47. 47)
      • 2. Majdalawieh, A., Kanan, M.C., El-Kadri, O., et al: ‘Recent advances in gold and silver nanoparticles: synthesis and applications’, J. Nanosci. Nanotechnol., 2014, 14, (7), pp. 47574780.
    48. 48)
      • 47. Izadiyan, Z., Shameli, K., Hara, H., et al: ‘Cytotoxicity assay of biosynthesis gold nanoparticles mediated by walnut (Juglans regia) green husk extract’, J. Mol. Struct., 2018, 1151, pp. 97105.
    49. 49)
      • 45. Win, K.Y., Feng, S.-S.: ‘Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs’, Biomaterials, 2005, 26, (15), pp. 27132722.
    50. 50)
      • 50. Judith Vijaya, J., Jayaprakash, N., Kombaiah, K., et al: ‘Bioreduction potentials of dried root of Zingiber officinale for a simple green synthesis of silver nanoparticles: antibacterial studies’, J. Photochem. Photobiol. B, Biol., 2017, 177, (Supplement C), pp. 6268.
    51. 51)
      • 67. Du, L., Suo, S., Wang, G., et al: ‘Mechanism and cellular kinetic studies of the enhancement of antioxidant activity by using surface-functionalized gold nanoparticles’, Chem. Eur. J., 2013, 19, (4), pp. 12811287.
    52. 52)
      • 9. Chaloupka, K., Malam, Y., Seifalian, A.M.: ‘Nanosilver as a new generation of nanoproduct in biomedical applications’, Trends Biotechnol., 2010, 28, (11), pp. 580588.
    53. 53)
      • 58. Morones, J.R., Elechiguerra, J.L., Camacho, A., et al: ‘The bactericidal effect of silver nanoparticles’, Nanotechnology, 2005, 16, (10), p. 2346.
    54. 54)
      • 62. Emami-Karvani, Z., Chehrazi, P.: ‘Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria’, Afr. J. Microbiol. Res., 2011, 5, (12), pp. 13681373.
    55. 55)
      • 46. Prathna, T., Chandrasekaran, N., Raichur, A.M., et al: ‘Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size’, Colloids Surf. B, Biointerfaces, 2011, 82, (1), pp. 152159.
    56. 56)
      • 3. Dhand, V., Soumya, L., Bharadwaj, S., et al: ‘Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity’, Mater. Sci. Eng. C, 2016, 58, pp. 3643.
    57. 57)
      • 53. Sreeram, K., Nidhin, M., Nair, B.: ‘Microwave assisted template synthesis of silver nanoparticles’, Bull. Mater. Sci., 2008, 31, (7), pp. 937942.
    58. 58)
      • 4. Nadworny, P.L., Wang, J., Tredget, E.E., et al: ‘Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model’, Nanomed. Nanotechnol. Biol. Med., 2008, 4, (3), pp. 241251.
    59. 59)
      • 38. Sathishkumar, M., Sneha, K., Won, S., et al: ‘Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity’, Colloids Surf. B, Biointerfaces, 2009, 73, (2), pp. 332338.
    60. 60)
      • 6. Wright, J.B., Lam, K., Buret, A.G., et al: ‘Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing’, Wound Repair Regeneration, 2002, 10, (3), pp. 141151.
    61. 61)
      • 29. Pham-Huy, L.A., He, H., Pham-Huy, C.: ‘Free radicals, antioxidants in disease and health’, Int. J. Biomed. Sci., 2008, 4, (2), p. 89.
    62. 62)
      • 28. Sen, S., Chakraborty, R., Sridhar, C., et al: ‘Free radicals, antioxidants, diseases and phytomedicines: current status and future prospect’, Int. J. Pharm. Sci. Rev. Res., 2010, 3, (1), pp. 91100.
    63. 63)
      • 16. Shameli, K., Bin Ahmad, M., Jazayeri, S.D., et al: ‘Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method’, Int. J. Mol. Sci., 2012, 13, (6), pp. 66396650.
    64. 64)
      • 22. Kale, R.D., Jagtap, P.: ‘Biogenic synthesis of silver nanoparticles using Citrus limon leaves and its structural investigation. Advances in health and environment safety’ (Springer, Nature, Singapore, 2018).
    65. 65)
      • 41. Vigneshwaran, N., Nachane, R., Balasubramanya, R., et al: ‘A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch’, Carbohydr. Res., 2006, 341, (12), pp. 20122018.
    66. 66)
      • 52. Kumar, K.P., Paul, W., Sharma, C.P.: ‘Green synthesis of gold nanoparticles with Zingiber officinale extract: characterization and blood compatibility’, Process Biochem., 2011, 46, (10), pp. 20072013.
    67. 67)
      • 23. Chandran, S.P., Chaudhary, M., Pasricha, R., et al: ‘Synthesis of gold nanotriangles and silver nanoparticles using aloe vera plant extract’, Biotechnol. Prog., 2006, 22, (2), pp. 577583.
    68. 68)
      • 13. Saravanakumar, A., Peng, M.M., Ganesh, M., et al: ‘Low-cost and eco-friendly green synthesis of silver nanoparticles using Prunus japonica (Rosaceae) leaf extract and their antibacterial, antioxidant properties’, Artif. Cells Nanomed. Biotechnol., 2017, 45, (6), pp. 11651171.
    69. 69)
      • 8. Ali, A., Ul Haq, I., Akhtar, J., et al: ‘Synthesis of Ag-NPs impregnated cellulose composite material: its possible role in wound healing and photocatalysis’, IET Nanobiotechnol., 2017, 11, (4), pp. 477484.
    70. 70)
      • 33. Blois, M.S.: ‘Antioxidant determinations by the use of a stable free radical’, Nature, 1958, 181, (4617), pp. 11991200.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5066
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5066
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address