http://iet.metastore.ingenta.com
1887

Surfactant-mediated synthesis of polyhydroxybutyrate (PHB) nanoparticles for sustained drug delivery

Surfactant-mediated synthesis of polyhydroxybutyrate (PHB) nanoparticles for sustained drug delivery

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, polyhydroxybutyrate (PHB) nanoparticles were synthesised following nanoprecipitation method having different solvents and surfactant (Tween 80) concentrations. In this study, PHB nanoparticles were encapsulated with curcumin and subjected for sustained curcumin delivery. Both the curcumin loaded and unloaded PHB nanoparticles were characterised using FTIR, SEM, and AFM. Sizes of the particles were found to be between 60 and 300 nm. The drug encapsulation efficiency and in vitro drug release of the nanoparticles were analysed. Antibacterial activity and anticancer activity were also evaluated. The LC50 values of most of the nanoparticles were found to be between 10 and 20 µg/100 µl, anticancer activity of curcumin loaded PHB nanoparticles were further confirmed by AO/PI staining and mitochondrial depolarisation assay.

References

    1. 1)
      • 1. Wang, Q.J., Chung, Y.-W.: ‘Encyclopedia of tribology’ (Springer, USA, 2013, 1st edn.).
    2. 2)
      • 2. Allen, T.M., Cullis, P.R.: ‘Drug delivery systems: entering the mainstream’, Science, 2004, 303, (5665), pp. 18181822.
    3. 3)
      • 3. Nagavarma, B.V.N., Yadav, H.K.S., Ayaz, A., et al: ‘Different techniques for preparation of polymeric nanoparticles- a review’, Asian J. Pharm. Clin. Res., 2012, 5, (Suppl. 3), pp. 1623.
    4. 4)
      • 4. Rao, J.P., Geckeler, K.E.: ‘Polymer nanoparticles: preparation techniques and size-control parameters’, Prog. Polym. Sci., 2011, 36, (7), pp. 887913.
    5. 5)
      • 5. Bala, I., Hariharan, S., Kumar, M.N.V.R.: ‘PLGA nanoparticles in drug delivery: the state of the art’, Crit. Rev. Ther. Drug Carrier Syst., 2004, 21, (5), pp. 387422.
    6. 6)
      • 6. Solaiman, D.K.Y., Ashby, R.D.: ‘Rapid genetic characterization of poly(hydroxyalkanoate) synthase and its applications’, Biomacromolecules, 2005, 6, (2), pp. 532537.
    7. 7)
      • 7. Shrivastav, A., Kim, H.-Y., Kim, Y.-R.: ‘Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system’, Biomed Res. Int., 2013, 2013, (Mcl), pp. 112.
    8. 8)
      • 8. Anderson, J.M., Rodriguez, A., Chang, D.T.: ‘Foreign body reaction to biomaterials’, Semin. Immunol., 2008, 20, (2), pp. 86100.
    9. 9)
      • 9. Deepak, V., Ram Kumar Pandian, S.b., Kalishwaralal, K., et al: ‘Purification, immobilization, and characterization of nattokinase on PHB nanoparticles’, Bioresour. Technol., 2009, 100, (24), pp. 66446646.
    10. 10)
      • 10. Shakeri, F., Shakeri, S.: ‘Preparation and characterization of carvacrol loaded polyhydroxybutyrate nanoparticles by nanoprecipitation and dialysis methods’, J. Food Sci., 2014, 79, (4), pp. N697N705.
    11. 11)
      • 11. Ganachaud, F., Katz, J.L.: ‘Nanoparticles and nanocapsules created using the ouzo effect: spontaneous emulsification as an alternative to ultrasonic and high-shear devices’, ChemPhysChem, 2005, 6, (2), pp. 209216.
    12. 12)
      • 12. Quintanar-Guerrero, D., Allémann, E., Fessi, H., et al: ‘Preparation techniques and mechanism of formation of biodegradable nanoparticles from preformed polymers’, Drug Dev. Ind. Pharm., 1998, 24, (12), pp. 11131128.
    13. 13)
      • 13. Singh, R., Lillard, J.W.: ‘Nanoparticle-based targeted drug delivery’, Exp. Mol. Pathol., 2009, 86, (3), pp. 215223.
    14. 14)
      • 14. Nosrati, H., Adibtabar, M., Sharafi, A., et al: ‘PAMAM-modified citric acid-coated magnetic nanoparticles as pH sensitive biocompatible carrier against human breast cancer cells’, Drug Dev. Ind. Pharm., 2018, 44, (8), pp. 13771384.
    15. 15)
      • 15. Nosrati, H., Sefidi, N., Sharafi, A., et al: ‘Bovine serum albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug’, Bioorg. Chem., 2018, 76, pp. 501509.
    16. 16)
      • 16. Salehiabar, M., Nosrati, H., Javani, E., et al: ‘Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery’, Int. J. Biol. Macromol., 2018, 115, pp. 8389.
    17. 17)
      • 17. Justin, C., Samrot, A.V., Sruthi, D.P., et al: ‘Preparation, characterization and utilization of coreshell super paramagnetic iron oxide nanoparticles for curcumin delivery’, PLoS One, 2018, 13, (7), doi: https://doi.org/10.1371/journal.pone.0200440.
    18. 18)
      • 18. Samrot, A.V., Suvedhaa, B., Sahithya, C.S., et al: ‘Purification and utilization of gum from Terminalia Catappa L. for synthesis of curcumin loaded nanoparticle and its in vitro bioactivity studies’, J. Cluster Sci., 2018, 29, (6), pp. 9891002.
    19. 19)
      • 19. Samrot, A.V., Burman, U., Philip, S.A., et al: ‘Synthesis of curcumin loaded polymeric nanoparticles from crab shell derived chitosan for drug delivery’, Inf. Med. Unlocked, 2018, 10, pp. 159182.
    20. 20)
      • 20. Samrot, A.V, Tatipamula, A., Padmanaban, J.S.: ‘Chelators influenced synthesis of chitosan – carboxymethyl cellulose microparticles for controlled drug delivery’, Appl. Nanosci., 2016, 6, (8), pp. 12191231.
    21. 21)
      • 21. Samrot, A.V, Senthilkumar, P., Bhushan, S., et al: ‘Sodium tri poly phosphate mediated synthesis of curcumin loaded chitosan-carboxymethyl cellulose microparticles for drug delivery’, Int. J. Pharmacogn. Phytochem. Res., 2017, 9, (5), pp. 694702.
    22. 22)
      • 22. Mukerjee, A., Vishwanatha, J.K.: ‘Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy’, Anticancer Res., 2009, 29, (10), pp. 38673875.
    23. 23)
      • 23. Benetton, S.A., Kedor-Hackmann, E.R.M., Santoro, M.I.R.M., et al: ‘Visible spectrophotometric and first-derivative UV spectrophotometric determination of rifampicin and isoniazid in pharmaceutical preparations’, Talanta, 1998, 47, (3), pp. 639643.
    24. 24)
      • 24. Hua, S.: ‘Comparison of in vitro dialysis release methods of loperamide-encapsulated liposomal gel for topical drug delivery’, Int. J. Nanomedicine, 2014, 9, (1), pp. 735744.
    25. 25)
      • 25. Senthilkumar, P., Dawn, S.S., Sree Samanvitha, K., et al: ‘Optimization and characterization of poly[R]hydroxyalkanoate of Pseudomonas aeruginosa SU-1 to utilize in nanoparticle synthesis for curcumin delivery’, Biocatal. Agric. Biotechnol., 2017, 12, pp. 292298.
    26. 26)
      • 26. Buzia, D.O., Cristian, D., Ștefan, D.: ‘Preparation and characterization of chitosan microspheres for vancomycin delivery’, Farmacia, 2015, 63, (6), pp. 897902.
    27. 27)
      • 27. Verma, A.K., Sachin, K., Saxena, A., et al: ‘Release kinetics from bio-polymeric nanoparticles encapsulating protein synthesis inhibitor- cycloheximide, for possible therapeutic applications’, Curr. Pharm. Biotechnol., 2005, 6, pp. 121130.
    28. 28)
      • 28. Mosmann, T.: ‘Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays’, J. Immunol. Methods, 1983, 65, pp. 5563.
    29. 29)
      • 29. Kanagesan, S., Hashim, M., Tamilselvan, S., et al: ‘Cytotoxic effect of nanocrystalline MgFe2O4 particles for cancer cure’, J. Nanomater., 2013, Article ID 865024, 8 pages, https://doi.org/10.1155/2013/865024.
    30. 30)
      • 30. Oliveira, F.C., Dias, M.L., Castilho, L.R., et al: ‘Characterization of poly(3-hydroxybutyrate) produced by Cupriavidus necator in solid-state fermentation’, Bioresour. Technol., 2007, 98, (3), pp. 633638.
    31. 31)
      • 31. Kolev, T.M., Velcheva, E.A., Stamboliyska, B.A., et al: ‘DFT and experimental studies of the structure and vibrational spectra of curcumin’, Int. J. Quantum Chem., 2005, 102, (6), pp. 10691079.
    32. 32)
      • 32. Takahashi, H. (ed.): ‘Time-Resolved Vibrational Spectroscopy V’. Proc. 5th Int. Conf. Time-Resolved Vibrational Spectroscopy, Tokyo, Japan, June 1991.
    33. 33)
      • 33. Pachiyappan, S., Dawn, S.S., Samrot, A.V., et al: ‘Production, optimization and characterization of poly[R]hydroxyalkanoate from enterobacter sp SU16’, Indian J. Sci. Technol., 2016, 9, (45), doi: http://dx.doi.org/10.17485/ijst%2F2016%2Fv9i45%2F87822"10.17485/ijst/2016/v9i45/87822.
    34. 34)
      • 34. Nachiyar, C.V., Devi, A.B., Namasivayam, S.K.R., et al: ‘Levofloxacin loaded polyhydroxybutyrate nanodrug conjugate for in-vitro controlled drug release’, Res. J. Pharm. Biol. Chem. Sci., 2015, 6, (116), pp. 116119.
    35. 35)
      • 35. Errico, C., Bartoli, C., Chiellini, F., et al: ‘Poly(hydroxyalkanoates)-based polymeric nanoparticles for drug delivery’, J. Biomed. Biotechnol., 2009, 2009, pp. 110.
    36. 36)
      • 36. Narvekar, M., Xue, H.Y., Eoh, J.Y., et al: ‘Nanocarrier for poorly water-soluble anticancer drugs—barriers of translation and solutions’, AAPS PharmSciTech., 2014, 15, (4), pp. 822833.
    37. 37)
      • 37. Kilicay, E., Erdal, E., Hazer, B., et al: ‘Antisense oligonucleotide delivery to cancer cell lines for the treatment of different cancer types’, Artif. Cells Nanomed. Biotechnol., 2016, 44, (8), pp. 19381948.
    38. 38)
      • 38. Sasikumar, P., Ayyasamy, P.M.: ‘Design and characterization of poly-hydroxy butyric acid (PHB) based polymeric nanoparticles for controlled release of doxorubicin for cancer treatment’, Int. J. Curr. Microbiol. Appl. Sci., 2015, 4, (12), pp. 311317.
    39. 39)
      • 39. Amirah, M.G., Amirul, A., Habibah, A.W.: ‘Formulation and characterization of rifampicin-loaded P(3HB- Co -4HB) nanoparticles’, Int. J. Pharm. Pharm. Sci., 2014, 6, (4), pp. 140146.
    40. 40)
      • 40. Wu, C., Zhang, M., Zhang, Z., et al: ‘Thymopentin nanoparticles engineered with high loading efficiency, improved pharmacokinetic properties, and enhanced immunostimulating effect using soybean phospholipid and PHBHHx polymer’, Mol. Pharm., 2014, 11, (10), pp. 33713377.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5053
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5053
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address