access icon free Evaluation of antibacterial property of hydroxyapatite and zirconium oxide-modificated magnetic nanoparticles against Staphylococcus aureus and Escherichia coli

In the first section of this research, superparamagnetic nanoparticles (NPs) (Fe3O4) modified with hydroxyapatite (HAP) and zirconium oxide (ZrO2) and thereby Fe3O4/HAP and Fe3O4/ZrO2 NPs were synthesised through co-precipitation method. Then Fe3O4/HAP and Fe3O4/ZrO2 NPs characterised with various techniques such as X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, Brunauer–Emmett–Teller, Fourier transform infrared, and vibrating sample magnetometer. Observed results confirmed the successful synthesis of desired NPs. In the second section, the antibacterial activity of synthesised magnetic NPs (MNPs) was investigated. This investigation performed with multiple microbial cultivations on the two bacteria; Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Obtained results proved that although both MNPs have good antibacterial properties, however, Fe3O4/HAP NP has greater antibacterial performance than the other. Based on minimum inhibitory concentration and minimum bactericidal concentration evaluations, S. aureus bacteria are more sensitive to both NPs. These nanocomposites combine the advantages of MNP and antibacterial effects, with distinctive merits including easy preparation, high inactivation capacity, and easy isolation from sample solutions by the application of an external magnetic field.

Inspec keywords: scanning electron microscopy; nanoparticles; superparamagnetism; X-ray diffraction; X-ray chemical analysis; nanofabrication; magnetic particles; X-ray photoelectron spectra; magnetometers; nanocomposites; nanomagnetics; calcium compounds; nanomedicine; precipitation (physical chemistry); iron compounds; microorganisms; biomedical materials; zirconium compounds; antibacterial activity; Fourier transform infrared spectra

Other keywords: Brunauer-Emmett-Teller method; X-ray analysis; S. aureus bacteria; scanning electron microscopy; antibacterial property; Staphylococcus aureus; antibacterial effects; microbial cultivations; coprecipitation method; Fourier transform infrared spectroscopy; hydroxyapatite; bactericidal concentration; vibrating sample magnetometer; Escherichia coli; nanocomposites; energy dispersive X-ray analysis; antibacterial activity; X-ray diffraction; X-ray photoelectron spectroscopy; superparamagnetic nanoparticles

Subjects: Fine-particle magnetic systems; Photoelectron spectra of composite surfaces; Biomedical materials; Nanotechnology applications in biomedicine; Magnetic properties of nanostructures; Other methods of nanofabrication; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Infrared and Raman spectra in composite materials; Amorphous and nanostructured magnetic materials

References

    1. 1)
      • 42. Xu, X., Deng, C., Gao, M., et al: ‘Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry’, Adv. Mater., 2006, 18, (24), pp. 32893293.
    2. 2)
      • 25. Ruparelia, J.P., Chatterjee, A.K., Duttagupta, S.P., et al: ‘Strain specificity in antimicrobial activity of silver and copper nanoparticles’, Acta Biomat., 2008, 4, (3), pp. 707716.
    3. 3)
      • 7. Chudasama, B., Vala, A.K., Andhariya, N., et al: ‘Enhanced antibacterial activity of bifunctional Fe3O4-Ag core-shell nanostructures’, Nano Res., 2009, 2, (12), pp. 955965.
    4. 4)
      • 40. Riahi, F., Bagherzadeh, M., Hadizadeh, Z.: ‘Modification of Fe3O4 superparamagnetic nanoparticles with zirconium oxide; preparation, characterization and its application toward fluoride removal’, RSC Adv., 2015, 5, (88), pp. 7205872068.
    5. 5)
      • 30. Saravanan, M., Nanda, A.: ‘Extracellular synthesis of silver bionanoparticles from aspergillus clavatus and its antimicrobial activity against Mrsa and Mrse’, Colloids Surf. B, Biointerfaces, 2010, 77, (2), pp. 214218.
    6. 6)
      • 18. Wang, L., Luo, J., Shan, S., et al: ‘Bacterial inactivation using silver-coated magnetic nanoparticles as functional antimicrobial agents’, Anal. Chem., 2011, 83, (22), pp. 86888695.
    7. 7)
      • 31. Chen, W.-Y., Lin, J.-Y., Chen, W.-J., et al: ‘Functional gold nanoclusters as antimicrobial agents for antibiotic-resistant bacteria’, Nanomedicine, 2010, 5, (5), pp. 755764.
    8. 8)
      • 19. Yu, T.-J., Li, P.-H., Tseng, T.-W., et al: ‘Multifunctional Fe3O4/alumina core/shell mnps as photothermal agents for targeted hyperthermia of nosocomial and antibiotic-resistant bacteria’, Nanomedicine, 2011, 6, (8), pp. 13531363.
    9. 9)
      • 58. Berry, C.C., Wells, S., Charles, S., et al: ‘Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro’, Biomaterials, 2003, 24, (25), pp. 45514557.
    10. 10)
      • 60. Ebrahiminezhad, A., Davaran, S., Rasoul-Amini, S., et al: ‘Synthesis, characterization and anti-listeria monocytogenes effect of amino acid coated magnetite nanoparticles’, Curr. Nanosci., 2012, 8, (6), pp. 868874.
    11. 11)
      • 37. Jangra, S.L., Stalin, K., Dilbaghi, N., et al: ‘Antimicrobial activity of zirconia (ZrO2) nanoparticles and zirconium complexes’, J. Nanosci. Nanotechnol., 2012, 12, (9), pp. 71057112.
    12. 12)
      • 43. Zhou, S., Garnweitner, G., Niederberger, M., et al: ‘Dispersion behavior of zirconia nanocrystals and their surface functionalization with vinyl group-containing ligands’, Langmuir, 2007, 23, (18), pp. 91789187.
    13. 13)
      • 51. Lee, H., Yeo, S.Y., Jeong, S.H.: ‘Antibacterial effect of nanosized silver colloidal solution on textile fabrics’, J. Mater. Sci., 2003, 38, (10), pp. 21992204.
    14. 14)
      • 54. Müller, K., Skepper, J.N., Posfai, M., et al: ‘Effect of ultrasmall superparamagnetic iron oxide nanoparticles (ferumoxtran-10) on human monocyte-macrophages in vitro’, Biomaterials, 2007, 28, (9), pp. 16291642.
    15. 15)
      • 5. Behera, S.S., Patra, J.K., Pramanik, K., et al: ‘Characterization and evaluation of antibacterial activities of chemically synthesized iron oxide nanoparticles’, World J. Nano Sci. Eng., 2012, 2, (4), p. 196.
    16. 16)
      • 23. Gajjar, P., Pettee, B., Britt, D.W., et al: ‘Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, pseudomonas Putida Kt2440’, J. Biol. Eng., 2009, 3, (1), p. 9.
    17. 17)
      • 35. Gouda, M.: ‘Nano-zirconium oxide and nano-silver oxide/cotton gauze fabrics for antimicrobial and wound healing acceleration’, J. Ind. Text, 2012, 41, (3), pp. 222240.
    18. 18)
      • 55. Singh, N., Jenkins, G.J., Asadi, R., et al: ‘Potential toxicity of superparamagnetic iron oxide nanoparticles (spion)’, Nano Rev., 2010, 1, (1), p. 5358.
    19. 19)
      • 21. Tourinho, F.A., Depeyrot, J., Silva, G.J.D., et al: ‘Electric double layered magnetic fluids based on spinel ferrite nanostructures’, 1998.
    20. 20)
      • 14. Mahmoudi, M., Serpooshan, V.: ‘Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat’, ACS nano, 2012, 6, (3), pp. 26562664.
    21. 21)
      • 38. Bagherzadeh, M., Amrollahi, M., Makizadeh, S.: ‘Decoration of Fe3O4 magnetic nanoparticles on graphene oxide nanosheets’, RSC Adv., 2015, 5, (128), pp. 105499105506.
    22. 22)
      • 48. Soenen, S.J., Rivera-Gil, P., Montenegro, J.-M., et al: ‘Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation’, Nano Today, 2011, 6, (5), pp. 446465.
    23. 23)
      • 52. Morones, J.R., Elechiguerra, J.L., Camacho, A., et al: ‘The bactericidal effect of silver nanoparticles’, Nanotechnology, 2005, 16, (10), p. 2346.
    24. 24)
      • 57. Berry, C.C., Wells, S., Charles, S., et al: ‘Cell response to dextran-derivatised iron oxide nanoparticles post internalisation’, Biomaterials, 2004, 25, (23), pp. 54055413.
    25. 25)
      • 12. Huang, W.C., Tsai, P.J., Chen, Y.C.: ‘Multifunctional Fe3O4@Au nanoeggs as photothermal agents for selective killing of nosocomial and antibiotic-resistant bacteria’, Small, 2009, 5, (1), pp. 5156.
    26. 26)
      • 6. Chen, W.J., Tsai, P.J., Chen, Y.C.: ‘Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria’, Small, 2008, 4, (4), pp. 485491.
    27. 27)
      • 10. Gu, H., Ho, P.-L., Tsang, K.W., et al: ‘Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration’, J. Am. Chem. Soc., 2003, 125, (51), pp. 1570215703.
    28. 28)
      • 26. Simon-Deckers, A., Loo, S., Mayne-L'hermite, M., et al: ‘Size-, composition-and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria’, Environ. Sci. Technol., 2009, 43, (21), pp. 84238429.
    29. 29)
      • 27. Sinha, R., Karan, R., Sinha, A., et al: ‘Interaction and nanotoxic effect of Zno and Ag nanoparticles on mesophilic and halophilic bacterial cells’, Bioresour. Technol., 2011, 102, (2), pp. 15161520.
    30. 30)
      • 46. Sondi, I., Salopek-Sondi, B.: ‘Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria’, J. Colloid Interface Sci., 2004, 275, (1), pp. 177182.
    31. 31)
      • 28. Tsuang, Y.H., Sun, J.S., Huang, Y.C., et al: ‘Studies of photokilling of bacteria using titanium dioxide nanoparticles’, Artif. Organs, 2008, 32, (2), pp. 167174.
    32. 32)
      • 16. Sureshkumar, M., Siswanto, D.Y., Lee, C.-K.: ‘Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles’, J. Mater. Chem., 2010, 20, (33), pp. 69486955.
    33. 33)
      • 1. Kapil, A.: ‘The challenge of antibiotic resistance: need to contemplate’, Indian J. Med. Res., 2005, 121, (2), p. 83.
    34. 34)
      • 49. Lin, D., Xing, B.: ‘Phytotoxicity of nanoparticles: inhibition of seed germination and root growth’, Environ. Pollut., 2007, 150, (2), pp. 243250.
    35. 35)
      • 11. Gustafsson, S., Fornara, A., Petersson, K., et al: ‘Evolution of structural and magnetic properties of magnetite nanoparticles for biomedical applications’, Cryst. Growth Des., 2010, 10, (5), pp. 22782284.
    36. 36)
      • 56. Berry, C.C., Curtis, A.S.: ‘Functionalisation of magnetic nanoparticles for applications in biomedicine’, J. Phys. D, Appl. Phys., 2003, 36, (13), p. R198.
    37. 37)
      • 17. Tran, N., Webster, T.J.: ‘Magnetic nanoparticles: biomedical applications and challenges’, J. Mater. Chem., 2010, 20, (40), pp. 87608767.
    38. 38)
      • 20. Kipp, J.: ‘The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs’, Int. J. Pharm., 2004, 284, (1), pp. 109122.
    39. 39)
      • 45. Feng, Q.L., Wu, J., Chen, G., et al: ‘A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus’, J. Biomed. Mater. Res., 2000, 52, (4), pp. 662668.
    40. 40)
      • 59. Chifiriuc, C., Lazar, V., Bleotu, C., et al: ‘Bacterial adherence to the cellular and inert substrate in the presence of CoFe2O4 and Fe3O4/oleic acid-core/shell’, Dig. J. Nanomater. Biostruct., 2011, 6, (1), pp. 3742.
    41. 41)
      • 3. Faraji, M., Yamini, Y., Rezaee, M.: ‘Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications’, J. Iran. Chem. Soc., 2010, 7, (1), pp. 137.
    42. 42)
      • 24. Jiang, W., Mashayekhi, H., Xing, B.: ‘Bacterial toxicity comparison between nano- and micro-scaled oxide particles’, Environ. Pollut., 2009, 157, (5), pp. 16191625.
    43. 43)
      • 50. Baker, C., Pradhan, A., Pakstis, L., et al: ‘Synthesis and antibacterial properties of silver nanoparticles’, J. Nanosci. Nanotechnol., 2005, 5, (2), pp. 244249.
    44. 44)
      • 22. Feris, K., Otto, C., Tinker, J., et al: ‘Electrostatic interactions affect nanoparticle-mediated toxicity to gram-negative bacterium pseudomonas aeruginosa Pao1’, Langmuir, 2009, 26, (6), pp. 44294436.
    45. 45)
      • 36. Huang, H.-L., Chang, Y.-Y., Chen, Y.-C., et al: ‘Cytocompatibility and antibacterial properties of zirconia coatings with different silver contents on titanium’, Thin Solid Films, 2013, 549, pp. 108116.
    46. 46)
      • 15. Mosaiab, T., Jeong, C.J., Shin, G.J., et al: ‘Recyclable and stable silver deposited magnetic nanoparticles with poly (vinyl pyrrolidone)-catechol coated iron oxide for antimicrobial activity’, Mater. Sci. Eng. C, 2013, 33, (7), pp. 37863794.
    47. 47)
      • 61. Ebrahiminezhad, A., Ghasemi, Y., Rasoul-Amini, S., et al: ‘Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (ions)’, Bull. Korean Chem. Soc., 2012, 33, (12), pp. 39573962.
    48. 48)
      • 4. Lu, A.H., Salabas, E.E.L., Schüth, F.: ‘Magnetic nanoparticles: synthesis, protection, functionalization, and application’, Angew. Chem., Int. Ed., 2007, 46, (8), pp. 12221244.
    49. 49)
      • 34. Stanić, V., Dimitrijević, S., Antić-Stanković, J., et al: ‘Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders’, Appl. Surf. Sci., 2010, 256, (20), pp. 60836089.
    50. 50)
      • 9. Gong, P., Li, H., He, X., et al: ‘Preparation and antibacterial activity of Fe3O4@Ag nanoparticles’, Nanotechnology, 2007, 18, (28), p. 285604.
    51. 51)
      • 41. Salem, W., Leitner, D.R., Zingl, F.G., et al: ‘Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli’, Int. J. Med. Microbiol., 2015, 305, (1), pp. 8595.
    52. 52)
      • 47. Nel, A.E., Mädler, L., Velegol, D., et al: ‘Understanding biophysicochemical interactions at the nano–bio interface’, Nature Mater., 2009, 8, (7), p. 543.
    53. 53)
      • 39. Bagherzadeh, M., Haddadi, H., Iranpour, M.: ‘Electrochemical evaluation and surface study of magnetite/pani nanocomposite for carbon steel protection in 3.5% NaCl’, Prog. Org. Coat., 2016, 101, pp. 149160.
    54. 54)
      • 2. Neu, H.C.: ‘The crisis in antibiotic resistance’, Science, 1992, 257, (5073), pp. 10641074.
    55. 55)
      • 13. Kong, H., Song, J., Jang, J.: ‘One-step fabrication of magnetic Γ-Fe2O3/polyrhodanine nanoparticles using in situ chemical oxidation polymerization and their antibacterial properties’, Chem. Commun., 2010, 46, (36), pp. 67356737.
    56. 56)
      • 32. Zhao, X., Shi, Y., Cai, Y., et al: ‘Cetyltrimethylammonium bromide-coated magnetic nanoparticles for the preconcentration of phenolic compounds from environmental water samples’, Environ. Sci. Technol., 2008, 42, (4), pp. 12011206.
    57. 57)
      • 53. Karlsson, H.L., Gustafsson, J., Cronholm, P., et al: ‘Size-dependent toxicity of metal oxide particles – a comparison between nano- and micrometer size’, Toxicol. Lett., 2009, 188, (2), pp. 112118.
    58. 58)
      • 44. Chang, K., Ji, W., Li, C., et al: ‘The effect of varying carboxylic-group content in reduced graphene oxides on the anticorrosive properties of pmma/reduced graphene oxide composites’, Express. Polym. Lett., 2014, 8, (12), pp. 908919.
    59. 59)
      • 29. Wang, Z., Lee, Y.-H., Wu, B., et al: ‘Anti-microbial activities of aerosolized transition metal oxide nanoparticles’, Chemosphere, 2010, 80, (5), pp. 525529.
    60. 60)
      • 33. Saravanan, S., Nethala, S., Pattnaik, S., et al: ‘Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering’, Int. J. Biol. Macromol., 2011, 49, (2), pp. 188193.
    61. 61)
      • 8. Dong, A., Lan, S., Huang, J., et al: ‘Modifying Fe3O4-functionalized nanoparticles with N-halamine and their magnetic/antibacterial properties’, ACS Appl. Mater. Interfaces, 2011, 3, (11), pp. 42284235.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5029
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5029
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading