Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Carpogenic ZnO nanoparticles: amplified nanophotocatalytic and antimicrobial action

This investigation has for the first time utilised environmental resource Prunus cerasifera seed extract phytochemicals for the green synthesis of carpogenic ZnO nanoparticles (NPs). Spherical morphology and size range of 56.57–107.70 nm at variable calcination temperatures without the use of any external reducing agent was obtained. The synthesised NPs exhibited hexagonal wurtzite geometry with an average crystal size 5.62 nm and a band gap of 3.4 eV. Carpogenic NPs were investigated for optical, compositional, morphological, and phytochemical make up via ultraviolet spectroscopy (UV–Vis), Fourier transform infrared analysis, X-ray powder diffraction, scanning electron microscopy, and gas chromatography and mass spectrometry. Carpogenic NPs degraded methyl red up to 83% with pseudo-first-order degradation kinetics (R 2 = 0.88) in 18 min signifying their remediation role in environment in conformity with all principles of green chemistry. Photocatalytic assays were performed in direct solar irradiance. Nine pathogens of biomedical and agricultural significance having multi-drug resistance were inhibited in vitro via the Kirby–Bauer disc diffusion assay. The enhanced photocatalytic and antimicrobial inhibition not only makes carpogenic ZnO NPs a future photo-degradative candidate for environmental remediation but also a nanofertiliser, nanofungicide, and nanobactericide synthesised via bioinspired, biomimetic, green, and unprecedented route.

References

    1. 1)
      • 6. Hu, Y., Zhang, M., Xiao, Z., et al: ‘Photodegradation of methyl red under visible light by mesoporous carbon nitride’, IOP Conf. Ser., Earth Environ. Sci., 2018, 121, (2), p. 022030.
    2. 2)
      • 20. Shaaban, M., Elmahdy, A.: ‘Biosynthesis of Ag, Se and ZnO nanoparticles with antimicrobial activities against resistant pathogens using waste isolate Streptomyces enissocaesilis’, IET Nanobiotechnol., 2018, pp. 741747, doi: 10.1049/iet-nbt.2017.0213.
    3. 3)
      • 81. Lipovsky, A., Tzitrinovich, Z., Friedmann, H., et al: ‘EPR study of visible light-induced ROS generation by nanoparticles of ZnO’, J. Phys. Chem. C, 2009, 113, (36), pp. 1599716001.
    4. 4)
      • 2. Sruthi, S., Millot, N., Mohanan, P.V.: ‘Zinc oxide nanoparticles mediated cytotoxicity, mitochondrial membrane potential and level of antioxidants in presence of melatonin’, Int. J. Biol. Macromol., 2017, 103, pp. 808818.
    5. 5)
      • 73. Fisher, M.C., Henk, D.A., Briggs, C.J., et al: ‘Emerging fungal threats to animal, plant and ecosystem health’, Nature, 2012, 484, pp. 186194.
    6. 6)
      • 72. Tanwar, J., Das, S., Fatima, Z., et al: ‘Multidrug resistance: an emerging crisis’, Interdiscip. Perspect. Infect. Dis., 2014, 2014, pp. 17.
    7. 7)
      • 61. Comparelli, R., Cozzoli, P.D., Curri, M.L., et al: ‘Photocatalytic degradation of methyl-red by immobilised nanoparticles of TiO2 and ZnO’, Water Sci. Technol., 2004, 49, (4), pp. 183188.
    8. 8)
      • 25. Jaffri, S.B., Ahmad, K.S.: ‘Augmented photocatalytic, antibacterial and antifungal activity of prunosynthetic silver nanoparticles’, Artif. Cells Nanomed. Biotechnol., 2017, pp. 111, doi: 10.1080/21691401.2017.1414826.
    9. 9)
      • 16. Ahmad, K.S., Rashid, N., Nazar, M.F., et al: ‘Adsorption and desorption characteristic of benzimidazole based fungicide carbendazim in Pakistani soils’, J. Chem. Soc. Pak., 2013, 35, pp. 10171024.
    10. 10)
      • 49. Vidya, R., Ravindran, P., Fjellvåg, H., et al: ‘Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations’, Phys. Rev. B, 2011, 83, p. 45206.
    11. 11)
      • 41. Vimala, K., Sundarraj, S., Paulpandi, M.: ‘Green synthesized doxorubicin loaded zinc oxide nanoparticles regulates the Bax and Bcl-2 expression in breast and colon carcinoma’, Process Biochem., 2014, 49, pp. 160172.
    12. 12)
      • 51. Vishnukumar, P., Vivekanandhan, S., Misra, M., et al: ‘Recent advances and emerging opportunities in phytochemical synthesis of ZnO nanostructures’, Mater. Sci. Semicond. Process., 2018, 80, pp. 143161.
    13. 13)
      • 31. Narendhran, S., Sivaraj, R.: ‘Biogenic ZnO nanoparticles synthesized using L. aculeata leaf extract and their antifungal activity against plant fungal pathogens’, Bull. Mater. Sci., 2017, 39, (1), pp. 15.
    14. 14)
      • 4. Fu, L., Fu, Z.: ‘Plectranthus amboinicus leaf extract-assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity’, Ceram. Int., 2015, 41, (2), pp. 24922496.
    15. 15)
      • 48. Kadam, A.N., Dhabbe, R.S., Kokate, M.R., et al: ‘Room temperature synthesis of CdS nanoflakes for photocatalytic properties’, J. Mater. Sci., Mater. Electron., 2014, 25, (4), pp. 18871892.
    16. 16)
      • 1. Vijayakumar, S., Vaseeharan, B., Malaikozhundan, B., et al: ‘Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: characterization and biomedical applications’, Biomed. Pharmacother., 2016, 84, pp. 12131222.
    17. 17)
      • 14. Santhoshkumar, J., Kumar, S.V., Rajeshkumar, S.: ‘Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen’, Resour. Effic. Technol., 2017, 3, (4), pp. 459465.
    18. 18)
      • 40. Matinise, N., Fuku, X.G., Kaviyarasu, K., et al: ‘ZnO nanoparticles via Moringa oleifera green synthesis: physical properties & mechanism of formation’, Appl. Surf. Sci., 2017, 406, pp. 339347.
    19. 19)
      • 56. Jayarambabu, N., Rao, K.V., Rajendar, V. ‘Biogenic synthesis, characterization, acute oral toxicity studies of synthesized Ag and ZnO nanoparticles using aqueous extract of Lawsonia inermis’, Mater. Lett., 2018, 211, pp. 4347.
    20. 20)
      • 54. Choudhary, M.K., Kataria, J., Cameotra, S.S., et al: ‘A facile biomimetic preparation of highly stabilized silver nanoparticles derived from seed extract of Vigna radiata and evaluation of their antibacterial activity’, Appl. Nanosci., 2016, 6, (1), pp. 105111.
    21. 21)
      • 52. Gawade, V.V., Gavade, N.L., Shinde, H.M., et al: ‘Green synthesis of ZnO nanoparticles by using Calotropis procera leaves for the photodegradation of methyl orange’, J. Mater. Sci., Mater. Electron., 2017, 28, (18), pp. 1403314039.
    22. 22)
      • 36. Romeilah, R.M., Fayed, S.A., Mahmoud, G.I.: ‘Chemical compositions, antiviral and antioxidant activities of seven essential oils’, J. Appl. Sci. Res., 2010, 6, (1), pp. 5062.
    23. 23)
      • 68. Davar, F., Majedi, A., Mirzaei, A.: ‘Green synthesis of ZnO nanoparticles and its application in the degradation of some dyes’, J. Am. Ceram. Soc., 2015, 98, (6), pp. 17391746.
    24. 24)
      • 5. Mekewi, M., Ahmed Shebl, A.I., Imam, M.S.A., et al: ‘Screening the insecticidal efficacy of nano ZnO synthesized via in-situ polymerization of cross linked polyacrylic acid as a template’, J. Mater. Sci. Technol., 2012, 28, (11), pp. 961968.
    25. 25)
      • 29. Vijayakumar, S., Vinoj, G., Malaikozhundan, B., et al: ‘Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae’, Spectrochim. Acta A, 2015, 137, pp. 886891.
    26. 26)
      • 42. Gupta, A., Srivastava, P., Bahadur, L., et al: ‘Comparison of physical and electrochemical properties of ZnO prepared via different surfactant-assisted precipitation routes’, Appl. Nanosci., 2015, 5, pp. 787794.
    27. 27)
      • 32. Agarwal, H., Menon, S., Kumar, S.V., et al: ‘Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route’, Chem.-Biol. Interact., 2018, 286, pp. 6070.
    28. 28)
      • 8. Lachheb, H., Puzenat, E., Houas, A., et al: ‘Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania’, Appl. Catal. B, Environ., 2002, 39, (1), pp. 7590.
    29. 29)
      • 15. Ayeshamariam, A., Kashif, M., Vidhya, V.S., et al: ‘Biosynthesis of (ZnO–Aloe Vera) nanocomposites and antibacterial/antifungal studies’, J. Optoelectron. Biomed. Mater., 2014, 6, (3), pp. 8599.
    30. 30)
      • 83. Jaffri, S.B., Ahmad, K.S.: ‘Neoteric environmental detoxification of organic pollutants and pathogenic microbes via green synthesized ZnO nanoparticles’, Environ. Technol., pp. 142(just-accepted), doi: 10.1080/09593330.2018.1488888.
    31. 31)
      • 74. Kretschmer, M., Leroch, M., Mosbach, A., et al: ‘Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea’, PLoS Pathog., 2009, 5, (12), p. e1000696.
    32. 32)
      • 7. Sahoo, C., Gupta, A.K., Pal, A.: ‘Photocatalytic degradation of methyl red dye in aqueous solutions under UV irradiation using Ag+ doped TiO2’, Desalination, 2005, 181, (1–3), pp. 91100.
    33. 33)
      • 33. Ramesh, M., Anbuvannan, M., Viruthagiri, G.: ‘Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity’, Spectrochim. Acta A, 2015, 136, pp. 864870.
    34. 34)
      • 66. Chen, X., Wu, Z., Liu, D., et al: ‘Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes’, Nanoscale Res. Lett., 2017, 12, (1), p. 143.
    35. 35)
      • 34. Bayrami, A., Parvinroo, S., Habibi-Yangjeh, A., et al: ‘Bio-extract-mediated ZnO nanoparticles: microwave-assisted synthesis, characterization and antidiabetic activity evaluation’, Artif. Cells Nanomed. Biotechnol., 2017, 46, (4), pp. 730739.
    36. 36)
      • 75. Ahmad, K.S.: ‘Pedospheric sorption investigation of sulfonyl urea herbicide Triasulfuron via regression correlation analysis in selected soils’, S. Afr. J. Chem., 2017, 70, pp. 163170.
    37. 37)
      • 82. Jaffri, S.B., Ahmad, K.S.: ‘Phytofunctionalized silver nanoparticles: green biomaterial for biomedical and environmental applications’, Rev. Inorg. Chem., 2018, 38, (3), pp. 127149.
    38. 38)
      • 64. Cai, L., Ren, F., Wang, M., et al: ‘V ions implanted ZnO nanorod arrays for photoelectrochemical water splitting under visible light’, Int. J. Hydrog. Energy, 2015, 40, (3), pp. 13941401.
    39. 39)
      • 76. Ahmad, K.S.: ‘Investigating the impact of soils’ physicochemical composition on chlorsulfuron pedospheric sorption’, Stud. Univ. Babes-Bolyai Chem., 2017, 62, pp. 165174.
    40. 40)
      • 67. Liu, S., Li, C., Yu, J., et al: ‘Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers’, CrystEngComm, 2011, 13, (7), pp. 25332541.
    41. 41)
      • 26. Yuvakkumar, R., Hong, S.I.: ‘Nd2O3: novel synthesis and characterization’, J. Sol-Gel Sci. Technol., 2015, 73, (2), pp. 511517.
    42. 42)
      • 62. Curri, M.L., Comparelli, R., Cozzoli, P.D., et al: ‘Colloidal oxide nanoparticles for the photocatalytic degradation of organic dye’, Mater. Sci. Eng. C, 2003, 23, (1–2), pp. 285289.
    43. 43)
      • 10. Hao, H., Sander, P., Iqbal, Z., et al: ‘The risk of some veterinary antimicrobial agents on public health associated with antimicrobial resistance and their molecular basis’, Front. Microbiol., 2016, 7, pp. 16261630.
    44. 44)
      • 46. Azizi, S., Mohamad, R., Mahdavi Shahri, M.: ‘Green microwave-assisted combustion synthesis of zinc oxide nanoparticles with Citrullus colocynthis (L.) Schrad: characterization and biomedical applications’, Molecules, 2017, 22, p. 301.
    45. 45)
      • 53. Scherrer, P.: ‘Determination of internal structure and size of colloid particles by X-rays’, in ‘Colloid chemistry a textbook’ (Springer, Berlin, Heidelberg, 1912), pp. 387409.
    46. 46)
      • 55. Senthilkumar, S.R., Sivakumar, T.: ‘Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities’, Int. J. Pharm. Pharm. Sci., 2014, 6, (6), pp. 461465.
    47. 47)
      • 43. Zak, A.K., Abrishami, M.E., Majid, W.A., et al: ‘Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method’, Ceram. Int., 2011, 37, (1), pp. 393398.
    48. 48)
      • 58. Sangeetha, G., Rajeshwari, S., Venckatesh, R.: ‘Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: structure and optical properties’, Mater. Res. Bull., 2011, 46, pp. 25602566.
    49. 49)
      • 22. Abbas, F., Maqbool, Q., Nazar, M., et al: ‘Green synthesised zinc oxide nanostructures through Periploca aphylla extract shows tremendous antibacterial potential against multidrug resistant pathogens’, IET Nanobiotechnol., 2017, 11, (8), pp. 935941.
    50. 50)
      • 39. Suresh, D., Nethravathi, P.C., Rajanaika, H., et al: ‘Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities’, Mater. Sci. Semicond. Process., 2015, 31, pp. 446454.
    51. 51)
      • 45. Abraham, N., Rufus, A., Unni, C., et al: ‘Nanostructured ZnO with bio-capping for nanofluid and natural dye based solar cell applications’, J. Mater. Sci., Mater. Electron., 2017, 28, (21), pp. 1652716539.
    52. 52)
      • 27. Ahmad, A., Senapati, S., Khan, M.I., et al: ‘Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species’, Nanotechnology, 2003, 14, (7), p. 824.
    53. 53)
      • 78. Elumalai, K., Velmurugan, S.: ‘Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.)’, Appl. Surf. Sci., 2015, 345, pp. 329336.
    54. 54)
      • 60. Galenda, A., Crociani, L., El Habra, N., et al: ‘Effect of reaction conditions on methyl red degradation mediated by boron and nitrogen doped TiO2’, Appl. Surf. Sci., 2014, 314, (9), pp. 919930.
    55. 55)
      • 37. Zare, E., Pourseyedi, S., Khatami, M.: ‘Simple biosynthesis of zinc oxide nanoparticles using nature's source, and it's in vitro bio-activity’, J. Mol. Struct., 2017, 1146, pp. 96103.
    56. 56)
      • 63. Nagaraja, R., Kottam, N., Girija, C.R., et al: ‘Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route’, Powder Technol., 2012, 215, pp. 9197.
    57. 57)
      • 71. Jagadish, K., Chandrashekar, B.N., Byrappa, K., et al: ‘Simultaneous removal of dye and heavy metals in a single step reaction using PVA/MWCNT composites’, Anal. Methods, 2016, 8, (11), pp. 24082412.
    58. 58)
      • 12. Tfifha, M., Ferjani, A., Mallouli, M., et al: ‘Carriage of multidrug-resistant bacteria among pediatric patients before and during their hospitalization in a tertiary pediatric unit in Tunisia’, J. Libyan Med., 2018, 13, (1), p. 1419047.
    59. 59)
      • 21. Sanaeimehr, Z., Javadi, I., Namvar, F.: ‘Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction’, Cancer Nanotechnol., 2018, 9, (1), pp. 38, doi: 10.1186/s12645-018-0037-5.
    60. 60)
      • 9. Fernando, J.F., Shortell, M.P., Noble, C.J., et al: ‘Controlling Au photodeposition on large ZnO nanoparticles’, ACS Appl. Mater. Interfaces, 2016, 8, (22), pp. 1427114283.
    61. 61)
      • 70. Rahman, Q.I., Ahmad, M., Misra, S.K., et al: ‘Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles’, Mater. Lett., 2013, 91, pp. 170174.
    62. 62)
      • 11. Hawkey, P.M., Warren, R.E., Livermore, D.M., et al: ‘Treatment of infections caused by multidrug-resistant Gram-negative bacteria: report of the British Society for Antimicrobial Chemotherapy/Healthcare Infection Society/British Infection Association Joint Working Party’, J. Antimicrob. Chemother., 2018, 73, (3), pp. 278.
    63. 63)
      • 44. Kumar, P.S., Paik, P., Raj, A.D., et al: ‘Biodegradability study and pH influence on growth and orientation of ZnO nanorods via aqueous solution process’, Appl. Surf. Sci., 2012, 258, (18), pp. 67656771.
    64. 64)
      • 23. Yuvakkumar, R., Suresh, J., Nathanael, A.J., et al: ‘Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications’, Mater. Sci. Eng. C, 2014, 41, pp. 1727.
    65. 65)
      • 50. Chung, Y.T., Ba-Abbad, M.M., Mohammad, A.W., et al: ‘Functionalization of zinc oxide (ZnO) nanoparticles and its effects on polysulfone-ZnO membranes’, Desalin. Water Treat., 2016, 57, (17), pp. 78017811.
    66. 66)
      • 79. Xiu, Z.M., Zhang, Q.B., Puppala, H.L., et al: ‘Negligible particle-specific antibacterial activity of silver nanoparticles’, Nano Lett., 2012, 12, (8), pp. 42714275.
    67. 67)
      • 57. Sorbiun, M., Mehr, E.S., Ramazani, A., et al: ‘Biosynthesis of Ag, ZnO and bimetallic Ag/ZnO alloy nanoparticles by aqueous extract of oak fruit hull (Jaft) and investigation of photocatalytic activity of ZnO and bimetallic Ag/ZnO for degradation of basic violet 3 dye’, J. Mater. Sci., Mater. Electron., 2018, 29, (4), pp. 28062814.
    68. 68)
      • 18. Ahmad, K.S., Rashid, N.: ‘Sorption–desorption behavior of newly synthesized N-(1H-Benzimidazole-2 ylmethyl) acetamide (ABNZ) on selected soils and its antifungal activity’, J. Chem. Soc. Pak., 2015, 37, pp. 841849.
    69. 69)
      • 28. Iravani, S.: ‘Green synthesis of metal nanoparticles using plants’, Green Chem., 2011, 13, (10), pp. 26382650.
    70. 70)
      • 47. Singh, A., Singh, N.B., Afzal, S., et al: ‘Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants’, J. Mater. Sci., 2018, 53, (1), pp. 185201.
    71. 71)
      • 13. El Chakhtoura, N.G., Saade, E., Lovleva, A., et al: ‘Therapies for multidrug resistant and extensively drug-resistant non-fermenting gram-negative bacteria causing nosocomial infections: a perilous journey toward “molecularly targeted” therapy’, Expert Rev. Anti Infect. Ther., 2018, pp. 89110, doi: 10.1080/14787210.2018.1425139.
    72. 72)
      • 3. Pietruszka, R., Witkowski, B.S., Gieraltowska, S., et al: ‘New efficient solar cell structures based on zinc oxide nanorods’, Sol. Energy Mater. Sol. Cells, 2015, 143, pp. 99104.
    73. 73)
      • 30. Khalil, A.T., Ovais, M., Ullah, I., et al: ‘Sageretia thea (Osbeck.) mediated synthesis of zinc oxide nanoparticles and its biological applications’, Nanomedicine, 2017, 12, (15), pp. 17671789.
    74. 74)
      • 24. Jaffri, S.B., Ahmad, K.S.: ‘Prunus cerasifera Ehrh. fabricated ZnO nano falcates and its photocatalytic and dose dependent in vitro bio-activity’, Open Chem., 2018, 16, (1), pp. 141154.
    75. 75)
      • 59. Moghaddam, A.B., Moniri, M., Azizi, S., et al: ‘Biosynthesis of ZnO nanoparticles by a new Pichia kudriavzevii yeast strain and evaluation of their antimicrobial and antioxidant activities’, Molecules, 2017, 22, (6), p. 872.
    76. 76)
      • 35. Koupaei, M.H., Shareghi, B., Saboury, A.A., et al: ‘Green synthesis of zinc oxide nanoparticles and their effect on the stability and activity of proteinase K’, RSC Adv., 2016, 6, (48), pp. 4231342323.
    77. 77)
      • 19. Nazir, S., Zaka, M., Adil, M., et al: ‘Synthesis, characterisation and bactericidal effect of ZnO nanoparticles via chemical and bio-assisted (Silybum marianum in vitro plantlets and callus extract) methods: a comparative study’, IET Nanobiotechnol., 2018, pp. 604608, doi: 10.1049/iet-nbt.2017.0067.
    78. 78)
      • 69. Comparelli, R., Fanizza, E., Curri, M.L., et al: ‘UV-induced photocatalytic degradation of azo dyes by organic-capped ZnO nanocrystals immobilized onto substrates’, Appl. Catal. B, 2005, 60, (1–2), pp. 111.
    79. 79)
      • 84. Ahmad, K.S., Jaffri, S.B.: ‘Phytosynthetic Ag doped ZnO nanoparticles: semiconducting green remediators’, Open Chem., 2018, 16, (1), pp. 556570.
    80. 80)
      • 65. Ong, C.B., Ng, L.Y., Mohammad, A.W.: ‘A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications’, Renew. Sustain. Energy Rev., 2018, 81, pp. 536551.
    81. 81)
      • 17. Ahmad, K.S., Rashid, N., Tazaiyen, S., et al: ‘Sorption–desorption characteristics of benzimidazole based fungicide 2-(4-fluorophenyl)-1H-benzimidazole on physicochemical properties of selected Pakistani soils’, J. Chem. Soc. Pak., 2014, 36, pp. 11891195.
    82. 82)
      • 77. Ahmad, K.S.: ‘Green electrokinetic remediation of Thiabendazole adsorbed soils via mineralization’, Agrochimica, 2017, 61, pp. 190205.
    83. 83)
      • 38. Król, A., Pomastowski, P., Rafińska, K., et al: ‘Zinc oxide nanoparticles: synthesis, antiseptic activity and toxicity mechanism’, Adv. Colloid Interface Sci., 2017, 249, pp. 3752.
    84. 84)
      • 80. Kairyte, K., Kadys, A., Luksiene, Z.: ‘Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension’, J. Photochem. Photobiol., 2013, 128, pp. 7884.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5006
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5006
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address