access icon free Facile microwave-assisted synthesis of NiO nanoparticles and its effect on soybean (Glycine max)

NiO nanoparticles in high purity, 15 ± 0.5 nm in size, were prepared via solid-state microwave irradiation. The [Ni(NH3)6](NO3)2 complex as a novel source was decomposed in the presence of microwave irradiation for a short time (10 min). The present method is facile, safe, and low-cost. This method exhibits other advantages; there is no need of a solvent, fuel, surfactant, expensive material, or complex instrument. Synthesised NiO nanoparticles were determined by various analyses. Also, for the first time, NiO nanoparticle effects on biochemical factors in soybean were investigated. Seeds of soybean were grown in the Murashige and Skoog agar medium containing different concentrations of NiO nanoparticles (0, 200, and 400 mg/L) for 21 days under growth chamber conditions. Estimates of malondialdehyde, hydrogen peroxide contents, and antioxidant enzymes (catalase and ascorbate peroxidase) under treatment of NiO nanoparticles were assayed. The result showed that by significantly increasing the concentration of NiO nanoparticles, the activity of catalase and ascorbate peroxidase enzymes was enhanced. Malondialdehyde and hydrogen peroxide contents significantly increased in the presence of NiO nanoparticles. In this study, the increasing activity of catalase and ascorbate peroxidase was not enough for radical oxygen species detoxification.

Inspec keywords: biochemistry; hydrogen compounds; microwave materials processing; enzymes; biotechnology; molecular biophysics; microorganisms; nanoparticles; cellular biophysics; nickel compounds

Other keywords: radical oxygen species detoxification; antioxidant enzymes; NiO; hydrogen peroxide contents; [Ni(NH3)6](NO3)2; facile microwave-assisted synthesis; malondialdehyde; solid-state microwave irradiation; Murashige; Skoog agar medium; biochemical factors; synthesised NiO nanoparticles; soybean; ascorbate peroxidase enzymes

Subjects: Industrial processes; Engineering materials; Biotechnology industry; Industrial and medical applications of microwaves

References

    1. 1)
      • 19. Heath, R.L., Packer, L.: ‘Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation’, Arch. Biochem. Biophys., 1968, 125, (1), pp. 189198.
    2. 2)
      • 33. Zhao, L., Peng, B., Hernandez-Viezcas, J.A., et al: ‘Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation’, ACS nano, 2012, 6, pp. 96159622.
    3. 3)
      • 34. Ma, X., Geiser-Lee, J., Deng, Y., et al: ‘Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation’, Sci. Total Environ., 2010, 408, (16), pp. 30533061.
    4. 4)
      • 16. Grindi, B., Beji, Z., Viau, G., et al: ‘Microwave-assisted synthesis and magnetic properties of M-SrFe12O19 nanoparticles’, J. Magn. Magn. Mater., 2018, 449, pp. 119126.
    5. 5)
      • 31. Nakate, U.T., Patil, P., Choudhury, S.P., et al: ‘Microwave assisted synthesis of and NiO nanoplates and structural, optical, magnetic characterizations’, Nanostruct. Nanoobjects., 2018, 14, pp. 6672.
    6. 6)
      • 22. Dhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A.: ‘Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase’, J. Exp. Bot., 1981, 32, (126), pp. 93101.
    7. 7)
      • 29. Shilin, L., Wen, Z., Ting, C.: ‘Synthesis of hierarchical flower-like NiO and the influence of surfactant’, Physica E., 2017, 85, pp. 1318.
    8. 8)
      • 36. Gill, S.S., Tuteja, N.: ‘Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants’, Plant. Physiol. Biochem., 2010, 48, (12), pp. 909930.
    9. 9)
      • 8. Hashemi, S., Asrar, Z., Pourseyedi, S., et al: ‘Plant-mediated synthesis of zinc oxide nano-particles and their effect on growth, lipid peroxidation and hydrogen peroxide contents in soybean’, Indian J. Plant. Physiol., 2016, 21, (3), pp. 312317.
    10. 10)
      • 26. Boschloo, G., Hagfeldt, A.: ‘Spectroelectrochemistry of nanostructured NiO’, J. Phys. Chem. B, 2001, 105, (15), pp. 30393044.
    11. 11)
      • 6. Tohidiyan, Z., Sheikhshoaie, I., Khaleghi, M., et al: ‘A novel copper (II) complex containing a tetradentate schiff base: synthesis, spectroscopy, crystal structure, DFT study, biological activity and preparation of its nano-sized metal oxide’, J. Mol. Struct., 2017, 1134, pp. 706714.
    12. 12)
      • 37. Asada, K.: ‘Production and scavenging of reactive oxygen species in chloroplasts and their functions’, Plant Physiol., 2006, 141, (2), pp. 391396.
    13. 13)
      • 15. Maham, M., Mohammad Sajadi, S., Kharimkhani, M.M., et al: ‘Biosynthesis of the CuO nanoparticles using Euphorbia Chamaesyce leaf extract and investigation of their catalytic activity for the reduction of 4-nitrophenol’, IET Nanobiotechnol.., 2017, 11, (7), pp. 766772.
    14. 14)
      • 20. Velikova, V., Yordanov, I., Edreva, A.: ‘Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines’, Plant Sci., 2000, 151, (1), pp. 5966.
    15. 15)
      • 23. Klug, H.P., Alexander, L.E.: ‘X-ray diffraction procedures’ (Wiley, New York, 1964, 2nd edn.).
    16. 16)
      • 18. Farhadi, S., Roostaei-Zaniyani, Z.: ‘Simple and low-temperature synthesis of NiO nanoparticles through solid-state thermal decomposition of the hexa (ammine)Ni(II) nitrate, [Ni(NH3)6](NO3)2, complex’, Polyhedron, 2011, 30, pp. 12441249.
    17. 17)
      • 4. Lachmapure, M., Paralikar, P., Palanisamy, M., et al: ‘Efficacy of biogenic silver nanoparticles against clinical isolates of fungi causing mycotic keratitis in humans’, IET Nanobiotechnol.., 2017, 11, (7), pp. 809814.
    18. 18)
      • 9. Rangaraj, S., Gopalu, K., Yuvakkumar, R., et al: ‘Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil’, J. Nanopart. Res., 2012, 14, (12), pp. 12941307.
    19. 19)
      • 41. Rico, C.M., Morales, M.I., Mc Creary, R., et al: ‘Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings’, Environ. Sci. Technol., 2013, 47, (24), pp. 1411014118.
    20. 20)
      • 21. Nakano, Y., Asada, K.: ‘Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts’, Plant Cell Physiol., 1981, 22, (5), pp. 867880.
    21. 21)
      • 12. Tohidiyan, Z., Sheikhshoaie, I.: ‘Sonochemical, spectroscopic study and antibacterial activity of two uranyl schiff base complexes in nano scale’, Rend. Fis. Acc. Lincei., 2017, 28, (2), pp. 405413.
    22. 22)
      • 24. Wang, C.H., Shao, C.L., Wang, L.J., et al: ‘Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers’, J. Colloid Interface Sci., 2009, 333, pp. 242248.
    23. 23)
      • 27. Farhadi, S., Roostaei-Zaniyani, Z.: ‘Preparation and characterization of NiO nanoparticles from thermal decomposition of the Ni(en)3](NO3)2 complex: A facile and low temperature route’, Polyhedron, 2011, 30, (6), pp. 971975.
    24. 24)
      • 5. Gunasundari, E., Kumar, P.S., Christopher, F.C., et al: ‘Green synthesis of metal nanoparticles loaded ultrasonic-assisted spirulina platensis using algal extract and their antimicrobial activity’, IET Nanobiotechnol.., 2017, 11, (6), pp. 754758.
    25. 25)
      • 30. Yu, Y., Xia, Y., Zeng, W., et al: ‘Synthesis of multiple networked NiO nanostructures for enhanced gas sensing performance’, Mater. Lett., 2017, 206, pp. 8083.
    26. 26)
      • 39. Mukherjee, A., Peralta-Videa, J.R., Bandyopadhyay, S., et al: ‘Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil’, Metallomics., 2014, 6, (1), pp. 132138.
    27. 27)
      • 28. Aslan, K., Geddes, C.D.: ‘A review of an ultrafast and sensitive bioassay platform technology: microwave-accelerated metal-enhanced fluorescence’, Plasmonics., 2008, 3, pp. 89101.
    28. 28)
      • 1. Saini, P., Saha, S.K., Roy, P., et al: ‘Evidence of reactive oxygen species (ROS) mediated apoptosis in Setaria cervi induced by green silver nanoparticles from Acacia auriculiformis at a very low dose’, Exp. Parasitol., 2016, 160, pp. 3948.
    29. 29)
      • 38. Chen, J., Liu, X., Wang, C., et al: ‘Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings’, J. Hazard. Mater., 2015, 297, (Supplement C), pp. 173182.
    30. 30)
      • 3. Khatami, M., Mehnipor, R., Poor, M.H.S., et al: ‘Facile biosynthesis of silver nanoparticles using descurainia sophia and evaluation of their antibacterial and antifungal properties’, J. Cluster Sci., 2016, 27, (5), pp. 16011612.
    31. 31)
      • 7. Das, P., Barua, S., Sarkar, S., et al: ‘Plant extract–mediated green silver nanoparticles: efficacy as soil conditioner and plant growth promoter’, J. Hazard. Mater., 2018, 346, pp. 6272.
    32. 32)
      • 35. Capaldi Arruda, S.C., Diniz Silva, A.L., Moretto Galazzi, R., et al: ‘Nanoparticles applied to plant science: A review’, Talanta, 2015, 131, pp. 693705.
    33. 33)
      • 25. Nakamoto, K.: ‘Infrared and Raman spectra of inorganic and coordination compounds, part B: applications in coordination, organometallic, and bioinorganic chemistry’ (Wiley, New York, 2009).
    34. 34)
      • 17. Zhu, Z., Wei, N., Liu, H., et al: ‘Microwave-assisted hydrothermal synthesis of Ni (OH)2 architectures and their in situ thermal convention to NiO’, Adv. Powder Technol., 2011, 22, (22), pp. 422426.
    35. 35)
      • 2. Hashemi, S., Asrar, Z., Pourseyedi, S., et al: ‘Green synthesis of ZnO nanoparticles by olive (olea europaea)’, IET Nanobiotechnol.., 2016, 10, (6), pp. 400404.
    36. 36)
      • 10. Navarro, E., Piccapietra, F., Wagner, B., et al: ‘Toxicity of silver nanoparticles to chlamydomonas reinhardtii’, Environ. Sci Technol., 2008, 42, (23), pp. 89598964.
    37. 37)
      • 42. Lei, Z., Mingyu, S., Xiao, W., et al: ‘Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation’, Biol. Trace. Elem. Res., 2008, 121, (1), pp. 6979.
    38. 38)
      • 32. Zheng, Q., Liu, Y., Guo, H., et al: ‘Synthesis of hierarchical 1D NiO assisted by microwave as anode material for lithium-ion batteries’, Mater. Res. Bull., 2018, 98, pp. 155159.
    39. 39)
      • 40. Poborilova, Z., Opatrilova, R., Babula, P.: ‘Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model’, Environ. Exp. Bot., 2013, 91, pp. 111.
    40. 40)
      • 14. Tohidiyan, Z., Sheikhshoaie, I., Khaleghi, M.: ‘Preparation and characterization of U3O8 nanoparticles via solid –state thermal decomposition of a new dioxidouranium (VI) complex [UO2(L)(DMF)]: L = 2, 2′-((1E, 1E′)-(1, 2 phenylen bis (azanylylidene)) bis (methanylylidene)) bis (4-bromo phenol)’, J. Appl. Chem., 2016, 10, pp. 7177.
    41. 41)
      • 13. Sheikhshoaie, I., Tohidiyan, Z.: ‘Fast green method synthesis of copper (II) schiff base complex in nano scale by sonochemical method’, Can. J. Basic Appl. Sci., 2015, 03, (05), pp. 164170.
    42. 42)
      • 11. Lee, S.H., Jung, H.K., Kim, T.C., et al: ‘Facile method for the synthesis of gold nanoparticles using an ion coater’, Appl. Surf. Sci., 2018, 434, pp. 10011006.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.5003
Loading

Related content

content/journals/10.1049/iet-nbt.2018.5003
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading