Facile synthesis of gold nanoparticles using carbon dots for electrochemical detection of neurotransmitter, dopamine in human serum and as a chemocatalyst for nitroaromatic reduction

Facile synthesis of gold nanoparticles using carbon dots for electrochemical detection of neurotransmitter, dopamine in human serum and as a chemocatalyst for nitroaromatic reduction

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Herein, the authors reported a carbon dots mediated synthesis of gold nanoparticles (AuNPs) at room temperature. Transmission electron microscopy revealed that the AuNPs are spherical in shape with a size of 10 nm. As-prepared AuNPs was immobilised on carbon paste electrode and subjected to electrochemical sensing of an important neurotransmitter dopamine. Differential pulse voltammetry studies revealed sensitive and selective determination of dopamine in the presence of commonly interfering ascorbic acid and uric acid. The linear detection range was 10–600 μM and the limit of detection was 0.7 ± 0.18 μM. The practical application was demonstrated by measuring dopamine in human blood serum and urine samples. The catalytic activity of AuNPs was evaluated by sodium borohydride mediated reduction of nitroaromatic compounds. The reduction kinetics was found to be pseudo-first-order kinetics. All the tested nitroaromatics reduced to corresponding amines in <10 min.


    1. 1)
      • 1. Eustis, S., El-Sayed, M.A.: ‘Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes’, Chem. Soc. Rev., 2006, 35, pp. 209217.
    2. 2)
      • 2. Dreaden, E.C., Alkilany, A.M., Huang, X., et al: ‘The golden age: gold nanoparticles for biomedicine’, Chem. Soc. Rev., 2012, 41, pp. 27402779.
    3. 3)
      • 3. Saha, K., Agasti, S.S., Kim, C., et al: ‘Gold nanoparticles in chemical and biological sensing’, Chem. Rev., 2012, 112, pp. 27392779.
    4. 4)
      • 4. Yeh, Y.-C., Crerana, B., Rotello, V.M.: ‘Gold nanoparticles: preparation, properties, and applications in bionanotechnology’, Nanoscale, 2012, 4, pp. 18711880.
    5. 5)
      • 5. Male, K.B., Li, J., Bun, C.C., et al: ‘Synthesis and stability of fluorescent gold nanoparticles by sodium borohydride in the presence of mono6-deoxy-6-pyridinium-β-cyclodextrin chloride’, J. Phys. Chem. C, 2008, 112, pp. 443451.
    6. 6)
      • 6. Megarajan, S., Behlol, A.A.K., Reddy, G.R.K., et al: ‘Phytoproteins in green leaves as building blocks for photosynthesis of gold nanoparticles: an efficient electrocatalyst towards the oxidation of ascorbic acid and the reduction of hydrogen peroxide’, J. Photochem. Photobiol. B, 2016, 155, pp. 712.
    7. 7)
      • 7. Ahmed, K.B.A., Swetha, S., Aravind, S., et al: ‘Preparation of gold nanoparticles using salicornia brachiata plant extract and evaluation of catalytic and antibacterial activity’, Spectrochim. Acta A, 2014, 130, pp. 5458.
    8. 8)
      • 8. Qin, X., Lu, W., Luo, G.C.Y., et al: ‘Novel synthesis of Au nanoparticles using fluorescent carbon nitride dots as photocatalyst’, Gold Bull., 2012, 45, pp. 6167.
    9. 9)
      • 9. Baker, S., Baker, G.: ‘Luminescent carbon nanodots: emergent nanolights’, Angew. Chem., Int. Ed., 2010, 49, pp. 67266744.
    10. 10)
      • 10. da Silva, J.C.G.E., Gonalves, H.M.R.: ‘Analytical and bioanalytical applications of carbon dots’, TrAC Trend. Anal. Chem., 2011, 30, pp. 13271336.
    11. 11)
      • 11. Jaiswal, A., Gautam, P.K., Ghosh, S.S., et al: ‘Carbon dots mediated room- temperature synthesis of gold nanoparticles in poly(ethylene glycol)’, J. Nanopart. Res., 2014, 16, p. 2188.
    12. 12)
      • 12. Mitra, S., Chandra, S., Patra, P., et al: ‘Novel fluorescent matrix embedded carbon quantum dots for the production of stable gold and silver hydrosol’, J. Mater. Chem., 2011, 21, pp. 1763817641.
    13. 13)
      • 13. Li, Y., Fan, X., Qi, J., et al: ‘Gold nanoparticles–graphene hybrids as active catalysts for Suzuki reaction’, Mat. Res. Bull., 2010, 45, pp. 14131418.
    14. 14)
      • 14. Megarajan, S., Ayaz Ahmed, K.B., Rajmohan, R., et al: ‘Easily accessible and recyclable copper nanoparticle catalyst for solvent-free synthesis of dipyrromethanes and aromatic amines’, RSC Adv., 2016, 6, pp. 103065103071.
    15. 15)
      • 15. Freeman, H.S.: ‘Aromatic amines: use in azo dye chemistry’, Front Biosci (Landmark Ed)., 2013, 18, pp. 145164.
    16. 16)
      • 16. El-Mekabaty, A., Habib, O.M.O.: ‘Synthesis and evaluation of some novel additives as antioxidants and corrosion inhibitors for petroleum fractions’, Pet. Sci., 2014, 11, pp. 161173.
    17. 17)
      • 17. Elemike, E.E., Onwudiwe, D.C., Nwankwo, H.U., et al: ‘Synthesis, crystal structure, electrochemical and anti-corrosion studies of Schiff base derived from o-toluidine and o-chlorobenzaldehyde’, J. Mol. Struct., 2017, 1136, pp. 253262.
    18. 18)
      • 18. Uberman, P.M., García, C.S., Rodríguez, J.R., et al: ‘PVP-Pd nanoparticles as efficient catalyst for nitroarene reduction under mild conditions in aqueous media’, Green Chem., 2017, 19, pp. 739748.
    19. 19)
      • 19. Kadam, H.K., Tilve, S.G.: ‘Advancement in methodologies for reduction of nitroarenes’, RSC Adv., 2015, 5, pp. 8339183407.
    20. 20)
      • 20. Yang, C., Xue, W., Yin, H., et al: ‘Hydrogenation of 3-nitro-4-methoxy-acetylaniline with H 2 to 3-amino-4-methoxy-acetylaniline catalyzed by bimetallic copper/nickel nanoparticles’, New J. Chem., 2017, 41, pp. 33583366.
    21. 21)
      • 21. Nasrollahzadeh, M., Sajadi, S.M., Maham, M., et al: ‘In situ green synthesis of Cu nanoparticles supported on natural natrolite zeolite for the reduction of 4-nitrophenol, Congo red and methylene blue’, IET Nanobiotechnol., 2017, 11, pp. 538545.
    22. 22)
      • 22. Aditya, T., Pal, A., Pal, T.: ‘Nitroarene reduction: a trusted model reaction to test nanoparticle catalysts’, Chem. Commun., 2015, 51, pp. 94109431.
    23. 23)
      • 23. Khan Behlol, A.A., Megarajan, S., Suresh Kumar, P., et al: ‘Highly selective colorimetric cysteine sensor based on the formation of cysteine layer on copper nanoparticles’, Sens. Actuators, B, 2016, 233, pp. 431437.
    24. 24)
      • 24. Ahmed, J., Rahman, M.M., Siddiquey, I.A., et al: ‘Efficient hydroquinone sensor based on zinc, strontium and nickel based ternary metal oxide (TMO) composites by differential pulse voltammetry’, Sens. Actuators, B, 2018, 256, pp. 383392.
    25. 25)
      • 25. Jeevika, A., Shankaran, D.R.: ‘Functionalized silver nanoparticles probe for visual colorimetric sensing of mercury’, Mat. Res. Bull., 2016, 83, pp. 4855.
    26. 26)
      • 26. Alqadami, A.A., Naushad, M., Abdalla, M.A., et al: ‘Determination of heavy metals in skin-whitening cosmetics using microwave digestion and inductively coupled plasma atomic emission spectrometry’, IET Nanobiotechnol., 2017, 11, pp. 597603.
    27. 27)
      • 27. Tiwari, I., Gupta, M.: ‘Neutral red interlinked gold nanoparticles/multiwalled carbon nanotubes hybrid nanomaterial and its application for the detection of NADH’, Mat. Res. Bull., 2014, 49, pp. 94101.
    28. 28)
      • 28. Jiang, T., Jiang, G., Huang, Q., et al: ‘High-sensitive detection of dopamine using graphitic carbon nitride by electrochemical method’, Mat. Res. Bull., 2016, 74, pp. 271277.
    29. 29)
      • 29. Wang, C., Yuan, R., Chai, Y., et al: ‘Simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan on gold nanoparticles/overoxidized-polyimidazole composite modified glassy carbon electrode’, Anal. Chim. Acta, 2012, 741, pp. 1520.
    30. 30)
      • 30. Jiang, J., Du, X.: ‘Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on [email protected] graphene oxide nanocomposites’, Nanoscale, 2014, 6, pp. 1130311309.
    31. 31)
      • 31. Ayaz Ahmed, K.B., Kumar, P.S., Anbazhagan, V.: ‘A facile method to prepare fluorescent carbon dots and their application in selective colorimetric sensing of silver ion through the formation of silver nanoparticles’, J. Lumin., 2016, 177, pp. 15481554.
    32. 32)
      • 32. Hervés, P., Pérez-Lorenzo, M., Liz-Marzán, L.M., et al: ‘Catalysis by metallic nanoparticles in aqueous solution: model reactions’, Chem. Soc. Rev., 2012, 41, pp. 55775587.
    33. 33)
      • 33. Chandra, U., Swamy, B.K., Gilbert, O., et al: ‘Voltammetric resolution of dopamine in the presence of ascorbic acid and uric acid at poly (calmagite) film coated carbon paste electrode’, Electrochim. Acta, 2010, 55, pp. 71667174.
    34. 34)
      • 34. Szymula, M., Michalek, J.N.: ‘Atmospheric and electrochemical oxidation of ascorbic acid in anionic, nonionic and cationic surfactant systems’, Colloid Polym. Sci., 2003, 281, pp. 11421148.
    35. 35)
      • 35. Kumar, P.S., Lakshminarayanan, V.: ‘Electron-transfer studies in a lyotropic columnar hexagonal liquid crystalline medium’, Langmuir, 2007, 23, pp. 15481554.
    36. 36)
      • 36. Wang, A., Feng, J., Li, Y., et al: ‘In-situ decorated gold nanoparticles on polyaniline with enhanced electrocatalysis toward dopamine’, Microchim. Acta, 2010, 171, pp. 431436.
    37. 37)
      • 37. Wei, M., Sun, L.-G., Xie, Z.-Y., et al: ‘Selective determination of dopamine on a Boron-doped diamond electrode modified with gold nanoparticle/polyelectrolyte-coated polystyrene colloids’, Adv. Funct. Mater., 2008, 18, pp. 14141421.
    38. 38)
      • 38. Tian, X., Cheng, C., Yuan, H., et al: ‘Simultaneous determination of l-ascorbic acid, dopamine and uric acid with gold nanoparticles-β-cyclodextrin-graphene-modified electrode by square wave voltammetry’, Talanta, 2012, 93, pp. 7985.
    39. 39)
      • 39. Raoof, J.B., Kiani, A., Ojani, R., et al: ‘Simultaneous voltammetric determination of ascorbic acid and dopamine at the surface of electrodes modified with self-assembled gold nanoparticle films’, J. Solid State Electrochem., 2010, 14, pp. 11711176.

Related content

This is a required field
Please enter a valid email address