Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Efavirenz oral delivery via lipid nanocapsules: formulation, optimisation, and ex-vivo gut permeation study

Present investigation aimed to prepare, optimise, and characterise lipid nanocapsules (LNCs) for improving the solubility and bioavailability of efavirenz (EFV). EFV-loaded LNCs were prepared by the phase-inversion temperature method and the influence of various formulation variables was assessed using Box–Behnken design. The prepared formulations were characterised for particle size, polydispersity index (PdI), zeta potential, encapsulation efficiency (EE), and release efficiency (RE). The biocompatibility of optimised formulation on Caco-2 cells was determined using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. Then, it was subjected to ex-vivo permeation using rat intestine. EFV-loaded LNCs were found to be spherical shape in the range of 20–100 nm with EE of 82–97%. The best results obtained from LNCs prepared by 17.5% labrafac and 10% solutol HS15 when the volume ratio of the diluting aqueous phase to the initial emulsion was 3.5. The mean particle size, zeta potential, PdI, EE, drug loading%, and RE during 144 h of optimised formulation were confirmed to 60.71 nm, −35.93 mV, 0.09, 92.60, 7.39 and 55.96%, respectively. Optimised LNCs increased the ex vivo intestinal permeation of EFV when compared with drug suspension. Thus, LNCs could be promising for improved oral delivery of EFV.

References

    1. 1)
      • 23. Bastiancich, C., Vanvarenberg, K., Ucakar, B., et al: ‘Lauroyl-gemcitabine-loaded lipid nanocapsule hydrogel for the treatment of glioblastoma’, J. Control. Release, 2016, 225, pp. 283293.
    2. 2)
      • 27. Taymouri, S., Varshosaz, J., Hassanzadeh, F., et al: ‘Optimisation of processing variables effective on self-assembly of folate targeted synpronic-based micelles for docetaxel delivery in melanoma cells’, IET Nanobiotechnol., 2015, 9, (5), pp. 306313.
    3. 3)
      • 7. McDonald, T.O., Giardiello, M., Martin, P., et al: ‘Antiretroviral solid drug nanoparticles with enhanced oral bioavailability: production, characterization, and in vitro–in vivo correlation’, Adv. Healthc. Mater., 2014, 3, (3), pp. 400411.
    4. 4)
      • 6. Avachat, A.M., Parpani, S.S.: ‘Formulation and development of bicontinuous nanostructured liquid crystalline particles of efavirenz’, Colloids Surf. B, 2015, 126, pp. 8797.
    5. 5)
      • 10. Varshosaz, J., Hajhashemi, V., Soltanzadeh, S.: ‘Lipid nanocapsule-based gels for enhancement of transdermal delivery of ketorolac tromethamine’, J Drug Deliv., 2011, 2011.
    6. 6)
      • 36. Roger, E., Lagarce, F., Garcion, E., et al: ‘Lipid nanocarriers improve paclitaxel transport throughout human intestinal epithelial cells by using vesicle-mediated transcytosis’, J. Control. Release, 2009, 140, (2), pp. 174181.
    7. 7)
      • 19. Roger, E., Lagarce, F., Benoit, J.P.: ‘The gastrointestinal stability of lipid nanocapsules’, Int. J. Pharm., 2009, 379, (2), pp. 260265.
    8. 8)
      • 31. Li, X., Li, R., Qian, X., et al: ‘Superior antitumor efficiency of cisplatin-loaded nanoparticles by intratumoral delivery with decreased tumor metabolism rate’, Eur. J. Pharm. Biopharm., 2008, 70, (3), pp. 726734.
    9. 9)
      • 29. Lamprecht, A., Bouligand, Y., Benoit, J.P.: ‘New lipid nanocapsules exhibit sustained release properties for amiodarone’, J. Control. Release, 2002, 84, (1), pp. 5968.
    10. 10)
      • 1. Feyera, A., Megerssa, B., Legesse, D., et al: ‘Prevention of mother to child transmission of HIV/AIDS: service utilization and associated factors among selected public health facilities in Ethiopia’, Med. Pract. Rev., 2017, 8, (1), pp. 13.
    11. 11)
      • 18. Roger, E., Gimel, J.C., Bensley, C., et al: ‘Lipid nanocapsules maintain full integrity after crossing a human intestinal epithelium model’, J. Control. Release, 2017, 253, pp. 1118.
    12. 12)
      • 33. Freitas, C., Müller, R.H.: ‘Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions’, Int. J. Pharm., 1998, 168, (2), pp. 221229.
    13. 13)
      • 15. Peltier, S., Oger, J.M., Lagarce, F., et al: ‘Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded lipid nanocapsules’, Pharm. Res., 2006, 23, (6), pp. 12431250.
    14. 14)
      • 35. Fonte, P., Soares, S., Costa, A., et al: ‘Effect of cryoprotectants on the porosity and stability of insulin-loaded PLGA nanoparticles after freeze-drying’, Biomatter, 2012, 2, (4), pp. 329339.
    15. 15)
      • 9. Jia, L., Zhang, D., Li, Z., et al: ‘Nanostructured lipid carriers for parenteral delivery of silybin: biodistribution and pharmacokinetic studies’, Colloids Surf. B, 2010, 80, (2), pp. 213218.
    16. 16)
      • 4. Makwana, V., Jain, R., Patel, K., et al: ‘Solid lipid nanoparticles (SLN) of efavirenz as lymph targeting drug delivery system: elucidation of mechanism of uptake using chylomicron flow blocking approach’, Int. J. Pharm., 2015, 495, (1), pp. 439446.
    17. 17)
      • 24. Radwan, S.E., Sokar, M.S., Abdelmonsif, D.A., et al: ‘Mucopenetrating nanoparticles for enhancement of oral bioavailability of furosemide: In vitro and in vivo evaluation/sub-acute toxicity study’, Int. J. Pharm., 2017, 526, (1), pp. 366379.
    18. 18)
      • 26. Emami, J., Boushehri, M.S., Varshosaz, J.: ‘Preparation, characterization and optimization of glipizide controlled release nanoparticles’, Res. Pharm. Sci., 2014, 9, (5), pp. 301314.
    19. 19)
      • 22. Kreuter, J.: ‘Nanoparticles and microparticles for drug and vaccine delivery’, J. Anat., 1996, 189, pp. 503505.
    20. 20)
      • 8. Pardeike, J., Weber, S., Haber, T., et al: ‘Development of an itraconazole-loaded nanostructured lipid carrier (NLC) formulation for pulmonary application’, Int. J. Pharm., 2011, 419, (1), pp. 329338.
    21. 21)
      • 3. Vyas, T.K., Shah, L., Amiji, M.M.: ‘Nanoparticulate drug carriers for delivery of HIV/AIDS therapy to viral reservoir sites’, Expert Opin. Drug Deliv., 2006, 3, (5), pp. 613628.
    22. 22)
      • 12. Safwat, S., Hathout, R.M., Ishak, R.A., et al: ‘Augmented simvastatin cytotoxicity using optimized lipid nanocapsules: a potential for breast cancer treatment’, J. Liposome Res., 2017, 27, (1), pp. 110.
    23. 23)
      • 17. Roger, E., Lagarce, F., Benoit, J.P.: ‘Development and characterization of a novel lipid nanocapsule formulation of Sn38 for oral administration’, Eur. J. Pharm. Biopharm., 2011, 79, (1), pp. 181188.
    24. 24)
      • 28. Barras, A., Mezzetti, A., Richard, A., et al: ‘Formulation and characterization of polyphenol-loaded lipid nanocapsules’, Int. J. Pharm., 2009, 379, (2), pp. 270277.
    25. 25)
      • 11. Heurtault, B., Saulnier, P., Pech, B., et al: ‘The influence of lipid nanocapsule composition on their size distribution’, Eur. J. Pharm. Sci., 2003, 18, (1), pp. 5561.
    26. 26)
      • 32. Vonarbourg, A., Saulnier, P., Passirani, C., et al: ‘Electrokinetic properties of noncharged lipid nanocapsules: influence of the dipolar distribution at the interface’, Electrophoresis, 2005, 26, (11), pp. 20662075.
    27. 27)
      • 34. Varshosaz, J., Eskandari, S., Tabbakhian, M.: ‘Freeze-drying of nanostructure lipid carriers by different carbohydrate polymers used as cryoprotectants’, Carbohydr. Polym., 2012, 88, (4), pp. 11571163.
    28. 28)
      • 21. Groo, A.C., Saulnier, P., Gimel, J.C., et al: ‘Fate of paclitaxel lipid nanocapsules in intestinal mucus in view of their oral delivery’, Int. J. Nanomed., 2013, 8, pp. 42914302.
    29. 29)
      • 5. Chiappetta, D.A., Hocht, C., Sosnik, A.: ‘A highly concentrated and taste-improved aqueous formulation of efavirenz for a more appropriate pediatric management of the anti-HIV therapy’, Curr. HIV Res., 2010, 8, (3), pp. 223231.
    30. 30)
      • 14. Karim, R., Palazzo, C., Evrard, B., et al: ‘Nanocarriers for the treatment of glioblastoma multiforme: current state-of-the-art’, J. Control. Release, 2016, 227, pp. 2337.
    31. 31)
      • 30. Yuan, H., Wang, L.L., Du, Y.Z., et al: ‘Preparation and characteristics of nanostructured lipid carriers for control-releasing progesterone by melt-emulsification’, Colloids Surf. B, 2007, 60, (2), pp. 174179.
    32. 32)
      • 20. Zhai, Y., Liu, M., Wan, M., et al: ‘Preparation and characterization of puerarin-loaded lipid nanocapsules’, J. Nanosci. Nanotechnol., 2015, 15, (4), pp. 26432649.
    33. 33)
      • 2. Chiappetta, D.A., Facorro, G., de Celis, E.R., et al: ‘Synergistic encapsulation of the anti-HIV agent efavirenz within mixed poloxamine/poloxamer polymeric micelles’, Nanomedicine, 2011, 7, (5), pp. 624637.
    34. 34)
      • 13. Huynh, N.T., Passirani, C., Saulnier, P., et al: ‘Lipid nanocapsules: a new platform for nanomedicine’, Int. J. Pharm., 2009, 379, (2), pp. 201209.
    35. 35)
      • 25. Shehata, E.M., Elnaggar, Y.S., Galal, S., et al: ‘Self-emulsifying phospholipid pre-concentrates (SEPPs) for improved oral delivery of the anti-cancer genistein: development, appraisal and ex-vivo intestinal permeation’, Int. J. Pharm., 2016, 511, (2), pp. 745756.
    36. 36)
      • 16. Groo, A.C., Bossiere, M., Trichard, L., et al: ‘In vivo evaluation of paclitaxel-loaded lipid nanocapsules after intravenous and oral administration on resistant tumor’, Nanomedicine, 2015, 10, (4), pp. 589601.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2018.0006
Loading

Related content

content/journals/10.1049/iet-nbt.2018.0006
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address