access icon free Surface characterisation and reaction kinetics of silver nanoparticles mediated by the leaf and flower extracts of French marigold (Tagetes patula)

In this study, French marigold's leaf and flower were used for the synthesis of silver nanoparticles (SNPs) in order to explore their potentials towards bioreduction of Ag+ to Agᵒ. The as-synthesised SNPs were characterised using UV–Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction, transmission electron microscopy, and zeta-potential analysis. The results obtained showed that the particles are polydispersed with sizes in the range 15.8–42.8 nm. The bioreduction was believed to be due to the amides, aldehyde functional groups, and essential oils present in the extracts as confirmed by the FTIR analysis. The growth mechanism involved in the reaction was studied which revealed oriented attachment (OA) onwards Ostwald ripening in the case of the flower-mediated synthesis and typical OA in the leaf-mediated synthesis. The studied kinetics of the particle formation showed that the reaction is possibly a pseudo-first-order reaction with some diffusion-controlled mechanism which is driven by high surface area to volume ratio in both the leaf- and flower-mediated synthesis.

Inspec keywords: transmission electron microscopy; ultraviolet spectra; scanning electron microscopy; nanomedicine; nanoparticles; electrokinetic effects; X-ray diffraction; particle size; nanofabrication; Fourier transform infrared spectra; biomedical materials; silver; visible spectra; reaction kinetics

Other keywords: pseudofirst-order reaction; zeta-potential analysis; Tagetes patula; bioreduction; leaf-mediated synthesis; powder X-ray diffraction; transmission electron microscopy; flower extracts; Ag; surface characterisation; Fourier transform infrared spectroscopy; FTIR analysis; attachment onwards Ostwald ripening; French marigold; silver nanoparticles; UV-visible spectroscopy; aldehyde functional groups; flower-mediated synthesis

Subjects: Nanotechnology applications in biomedicine; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Biomedical materials; Visible and ultraviolet spectra (condensed matter); Electrochemistry and electrophoresis; Infrared and Raman spectra in inorganic crystals; Other methods of nanofabrication

References

    1. 1)
      • 33. Okoli, P.C., Adewuyi, G.O., Zhang, G., et al: ‘Mechanism of dialkyl phthalates removal from aqueous solution using ?-cyclodextrin and starch based polyurethane polymer adsorbents’, Carbohyd. Polym., 2014, 114, pp. 440449.
    2. 2)
      • 29. Nguyen, T.K.T., Maclean, N., Mahiddine, S.: ‘Mechanisms of nucleation and growth of nanoparticles in solution’, Chem. Rev., 2014, 114, pp. 76107630.
    3. 3)
      • 28. Yanjun, F., Zhenbo, X., Fengjiao, Y., et al: ‘Formation mechanism of hollow microspheres consisting of ZnO nanosheets’, Cryst EngComm., 2012, 14, pp. 86158619.
    4. 4)
      • 25. Elemike, E.E., Onwudiwe, D.C., Mkhize, Z.: ‘Eco-friendly synthesis of AgNPs using Verbascum thapsus extract and its photocatalytic activity’, Mat. Lett., 2016, 185, pp. 452455.
    5. 5)
      • 17. Liu, Y., Kathan, K., Saad, W., et al: ‘Ostwald ripening of beta-carotene nanoparticles’, Phys. Rev. Lett., 2007, 98, p. 036102(4).
    6. 6)
      • 27. Meléndrez, M.F., Cárdenas, G., Arbiol, J.: ‘Synthesis and characterization of gallium colloidal nanoparticles’, J. Col. Interf. Sci., 2010, 346, pp. 279287.
    7. 7)
      • 3. Pattabi, M., Uchil, J.: ‘Synthesis of cadmium sulphide nanoparticles, Sol. Energy Mater’, Solar Energy Mater. Sol. Cell, 2000, 63, pp. 309314.
    8. 8)
      • 10. Ovais, M., Nadhman, A., Khalil, A.T., et al: ‘Biosynthesized colloidal silver and gold nanoparticles as emerging leishmanicidal agents: an insight’, Nanomedicine, 2017, 12, pp. 28072819.
    9. 9)
      • 12. Elemike, E.E., Chuku, A., Labulo, A.H., et al: ‘Evaluation of antibacterial activities of silver nanoparticles green-synthesized using pineapple leaf (Ananas comosus)’, Micron, 2014, 57, pp. 15.
    10. 10)
      • 13. Banoee, M., Mokhtari, N., Sepahi, A.A., et al: ‘The green synthesis of gold nanoparticles using the ethanol extract of black tea and its tannin free fraction’, Iran. J. Matl. Sci. Eng., 2010, 7, pp. 4852.
    11. 11)
      • 5. Ramesh, P., Rajendra, A., Meenakshisundaram, M.: ‘Green synthesis of zinc oxide nanoparticles using flower extract Cassia auriculata’, J. Nanosci. Nanotechnol., 2014, 2, pp. 4145.
    12. 12)
      • 15. Gadhane, A.J., Padmanabhan, P., Kamble, S.P., et al: ‘Synthesis of silver nanoparticles using extract of neem leaf and triphala and evaluation of their antimicrobial activities’, Int. J Pharma. Bio Sci., 2012, 3, pp. 88100.
    13. 13)
      • 9. Tkachenko, A.G., Xie, H., Coleman, D., et al: ‘Multifunctional gold nanoparticle-peptide complexes for nuclear targeting’, J. Am Chem. Soc., 2003, 125, pp. 47004701.
    14. 14)
      • 20. Mares, D., Tosi, B., Poli, F., et al: ‘Antifungal activity of Tagetes patula extracts on some phytopathogenic fungi: ultrastructural evidence on Pythium ultimum’, Microbiol. Res., 2004, 159, pp. 295304.
    15. 15)
      • 31. Weiqiang, L.V., Weidong, H., Xiaoning, W., et al: ‘Understanding the oriented-attachment growth of nanocrystals from an energy point of view: a review’, Nanoscale, 2014, 6, pp. 25312547.
    16. 16)
      • 26. Kumari, J., Mamta, B., Ajeet, S.: ‘Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics’, J. Rad Res. Appl. Sci., 2016, 9, pp. 217227.
    17. 17)
      • 32. Nwadiogbu, J.O., Okoye, P.A.C., Ajiwe, V.I., et al: ‘Hydrophobic treatment of corn cob by acetylation: kinetics and thermodynamics studies’, J. Env. Chem. Eng., 2014, 2, pp. 16991704.
    18. 18)
      • 22. Romagnoli, C., Bruni, R., Andreotti, E., et al: ‘Chemical characterization and antifungal activity of essential oil of capitula from wild Indian Tagetes patula L’, Protoplasma, 2005, 225, pp. 5765.
    19. 19)
      • 23. Mirkin, C.A., Letsinge, R.N., Mucic, R.C., et al: ‘DNA-based method for rationally assembling nanoparticles into macroscopic materials’, Nature, 1996, 382, pp. 607609.
    20. 20)
      • 6. Desai, R., Mankad, V., Gupta, S.K., et al: ‘Size distribution of silver nanoparticles: UV-visible spectroscopic assessment’, Nanosci. Nanotechnol Let., 2012, 4, pp. 3034.
    21. 21)
      • 34. Oladoja, N.A., Abolumoye, C.O., Oladimeji, T.B.: ‘Kinetics and isotherm studies on methylene blue adsorption onto ground palm kernel coat’, Turk. J. Eng. Env. Sci., 2008, 32, pp. 301312.
    22. 22)
      • 30. Eduardo, J.H.L., Caue, R., Elson, L., et al: ‘Oriented attachment:? an effective mechanism in the formation of anisotropic nanocrystals’, J. Phys. Chem. B, 2005, 109, pp. 2084220846.
    23. 23)
      • 36. Rowell, R.M., Simonson, S., Hess, S., et al: ‘Acetyl distribution in acetylated whole wood and reactivity of isolated wood cell-wall components to acetic anhydride’, Wood Fiber Sci., 1994, 26, pp. 1118.
    24. 24)
      • 16. Dubey, M., Bhadauria, S., Kushwah, B.S.: ‘Green synthesis of nanosilver particles from extract of Eucalyptus hybrida (safeda) leaf Digest’, Digest J. Nanomatl. Biostr., 2009, 4, pp. 537543.
    25. 25)
      • 14. Dare, E.O., Oseghale, C.O., Labulo, A.H., et al: ‘Green synthesis and growth kinetics of nanosilver under bio-diversified plant extracts influence’, J. Nanostruct. Chem., 2015, 5, pp. 8594.
    26. 26)
      • 8. Bharani, M., Karpagam, T., Varalakshmi, B., et al: ‘Synthesis and characterization of silver nano particles from Wrightia tinctoria’, Int. J. Appl. Biol. Pharm. Technol., 2012, 3, pp. 5863.
    27. 27)
      • 1. Bar, H., Bhui, D.K., Sahoo, G.P., et al: ‘Green synthesis of silver nanoparticles using seed extract of Jatropha curcas’, Coll Surf., 2009, 348, pp. 212216.
    28. 28)
      • 21. Dutta, B.K., Karmakar, S., Naglot, A., et al: ‘Anticandidial activity of some essential oils of a mega biodiversity hotspot in India’, Mycoses, 2007, 50, pp. 121124.
    29. 29)
      • 35. Hill, C.A.S., Jones, D., Strickland, G., et al: ‘Kinetic and mechanistic aspects of the acetylation of wood with acetic anhydride’, Holzforschung, 1998, 52, pp. 623629.
    30. 30)
      • 19. Muhammad, O., Abida, R., Shagufta, N., et al: ‘Zabta K. S. Current state and prospects of the phytosynthesized colloidal goldnanoparticles and their applications in cancer theranostics’, Appl. Microbiol. Biotechnol., 2017, 101, pp. 35513565.
    31. 31)
      • 4. Lin, S.M., Lin, F.Q., Guo, H.Q., et al: ‘Surface states, induced photoluminescence from Mn2+ doped CdS nano particles’, Solid State Commun., 2000, 115, pp. 615618.
    32. 32)
      • 24. Eduardo, J.H.L., Caue, R., Elson, L., et al: ‘Growth kinetics of tin oxide nanocrystals in colloidal suspensions under hydrothermal conditions’, Chem. Phys, 2006, 328, pp. 229235.
    33. 33)
      • 11. Barabadi, H., Ovais, M., Shinwari, Z.K., et al: ‘Anti-cancer green bionanomaterials: present status and future prospects’, Green Chem. Lett. Rev., 2017, 10, pp. 285314.
    34. 34)
      • 2. Ravindran, T.R., Arora, A.K., Balamuragan, B., et al: ‘Inhomogeneous broadening in the photo-luminescence spectrum of CdS nanoparticles’, Nanostruct. Mater., 1999, 11, pp. 603609.
    35. 35)
      • 18. Pandey, S., Oza, G., Vishwanathan, M., et al: ‘Biosynthesis of highly stable gold nanoparticles using Citrus limone’, Anals Biol. Res., 2012, 3, pp. 23782382.
    36. 36)
      • 7. Moulin, E., Sukmanowski, J., Schulte, M., et al: ‘Thin-film silicon solar cells with integrated silver nanoparticles’, Thin Solid Films, 2008, 516, pp. 68136817.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0316
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0316
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading