access icon free Fungal xylanases-mediated synthesis of silver nanoparticles for catalytic and biomedical applications

Green synthesis of nanoparticles has fuelled the use of biomaterials to synthesise a variety of metallic nanoparticles. The current study investigates the use of xylanases of Aspergillus niger L3 (NEA) and Trichoderma longibrachiatum L2 (TEA) to synthesise silver nanoparticles (AgNPs). Characterisation of AgNPs was carried out using UV–Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy, while their effectiveness as antimicrobial, antioxidant, catalytic, anticoagulant, and thrombolytic agents were determined. The colloidal AgNPs was brownish with surface plasmon resonance at 402.5 and 410 nm for NEA-AgNPs and TEA-AgNPs, respectively; while FTIR indicated that protein molecules were responsible for the capping and stabilisation of the nanoparticles. The spherical nanoparticles had size of 15.21–77.49 nm. The nanoparticles significantly inhibited the growth of tested bacteria (63.20–88.10%) and fungi (82.20–86.10%), and also scavenged DPPH (37.48–79.42%) and hydrogen peroxide (20.50–96.50%). In addition, the AgNPs degraded malachite green (78.97%) and methylene blue (25.30%). Furthermore, the AgNPs displayed excellent anticoagulant and thrombolytic activities using human blood. This study has demonstrated the potential of xylanases to synthesise AgNPs which is to the best of our knowledge the first record of such. The present study underscores the relevance of xylanases in nanobiotechnology.

Inspec keywords: ultraviolet spectra; microorganisms; surface plasmon resonance; antibacterial activity; catalysis; nanofabrication; visible spectra; Fourier transform infrared spectra; colloids; nanoparticles; transmission electron microscopy; particle size; blood; silver

Other keywords: colloidal nanoparticles; UV-vis spectroscopy; thrombolytic agents; Fourier transform infrared spectroscopy; surface plasmon resonance; catalytic applications; biomaterials; fungal xylanases-mediated synthesis; Ag; protein molecules; silver nanoparticles; DPPH; nanobiotechnology; biomedical applications; antimicrobial agents; spherical nanoparticles; metallic nanoparticles; hydrogen peroxide; anticoagulant agents; transmission electron microscopy; Aspergillus niger L3; Trichoderma longibrachiatum L2; antioxidant agents; green synthesis; methylene blue; malachite green; human blood; FTIR spectra; catalytic agents

Subjects: Visible and ultraviolet spectra of metals, semimetals, and alloys; Infrared and Raman spectra in metals; Colloids; Other methods of nanofabrication; Heterogeneous catalysis at surfaces and other surface reactions; Collective excitations (surface states); Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Optical properties of metals and metallic alloys (thin films, low-dimensional and nanoscale structures)

References

    1. 1)
      • 62. Oladipo, I. C., Lateef, A., Elegbede, J.A., et al: ‘Enterococcus species for the one-pot biofabrication of gold nanoparticles: characterization and nanobiotechnological applications’, J. Photochem. Photobiol. B: Biol., 2017, 173, pp. 250257.
    2. 2)
      • 48. Priyadarshini, S., Gopinath, V., Priyadharsshini, N.M., et al: ‘Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its application’, Colloids Surf. B Biointerf., 2013, 102, pp. 232237.
    3. 3)
      • 44. Lateef, A., Ojo, S.A., Elegbede, J.A., et al: ‘Evaluation of some biosynthesized silver nanoparticles for biomedical applications: hydrogen peroxide scavenging, anticoagulant and thrombolytic activities’, J. Clust. Sci., 2017, 28, pp. 13791392.
    4. 4)
      • 4. Adelere, I.A., Lateef, A.: ‘A novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes and pigments’, Nanotechnol. Rev., 2016, 5, pp. 567587.
    5. 5)
      • 28. Lateef, A., Adelere, I.A., Gueguim-Kana, E.B.: ‘The biology and potential biotechnological applications of Bacillus safensis’, Biologia, 2015, 70, pp. 411419.
    6. 6)
      • 37. Prasannaraj, G., Venkatachalam, P.: ‘Enhanced antibacterial, anti-biofilm and antioxidant (ROS) activities of biomolecules engineered silver nanoparticles against clinically isolated gram positive and gram negative microbial pathogens’, J. Clust. Sci., 2017, 28, pp. 645664.
    7. 7)
      • 56. Ahmed, K.B.A., Senthilnathan, R., Megarajan, S., et al: ‘Sunlight mediated synthesis of silver nanoparticles using redox phytoprotein and their application in catalysis and colorimetric mercury sensing. J. Photochem. Photobiol. B: Biol., 2015, 151, pp. 3945.
    8. 8)
      • 6. Roopan, R.G., Madhumitha, G., Rahuman, A.A., et al: ‘Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity’, Ind. Crops Prod., 2013, 43, pp. 631635.
    9. 9)
      • 42. Olajire, A.A., Azeez, L.: ‘Total antioxidant activity, phenolic, flavonoid and ascorbic acid contents of Nigerian vegetables’, Afr. J. Food Sci. Technol., 2011, 2, pp. 022029.
    10. 10)
      • 34. Won-Jae, C., Da Yeon, P., Yong-Keun, C., et al: ‘A novel alkaliphilic xylanase from the newly isolated mesophilic Bacillus sp. MX47: production, purification, and characterization’, Appl. Biochem. Biotechnol., 2012, 168, pp. 899909.
    11. 11)
      • 36. Lateef, A., Ojo, M.O.: ‘Public health issues in the processing of Cassava (Manihot esculenta) for production ‘Lafun’ and the application of hazard analysis control measures’, Qual. Assur. Saf. Crops Foods, 2016, 8, pp. 165177.
    12. 12)
      • 17. Lateef, A., Ojo, S.A., Akinwale, A.S., et al: ‘Biogenic synthesis of silver nanoparticles using cell-free extract of Bacillus safensis LAU 13: antimicrobial, free radical scavenging and larvicidal activities’, Biologia, 2015, 70, pp. 12951306.
    13. 13)
      • 53. Wani, I.A., Ahmad, T.: ‘Size and shape dependant antifungal activity of gold nanoparticles: a case study of Candida’, Colloids Surf. B: Biointerf., 2013, 101, pp. 162170.
    14. 14)
      • 57. Lateef, A., Ojo, S.A., Folarin, B.I., et al: ‘Kolanut (Cola nitida) mediated synthesis of silver-gold alloy nanoparticles: antifungal, catalytic, larvicidal and thrombolytic applications’, J. Clust. Sci., 2016, 27, pp. 15611577.
    15. 15)
      • 2. Shaligram, N.S., Bule, M., Bhambure, R., et al: ‘Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain’, Process Biochem., 2009, 44, pp. 939943.
    16. 16)
      • 23. Durán, M., Silveira, C.P., Durán, N.: ‘Catalytic role of traditional enzymes for biosynthesis of biogenic metallic nanoparticles: a mini-review’, IET Nanobiotechnol., 2015, 9, pp. 314323.
    17. 17)
      • 40. Ghaedi, M., Sadeghian, B., Amiri, P.A., et al: ‘Kinetics, thermodynamics and equilibrium evaluation of direct yellow 12 removal by adsorption onto silver nanoparticles loaded activated carbon’, Chem. Eng., 2012, 187, pp. 133141.
    18. 18)
      • 39. Khatami, M., Pourseyedi, S., Khatami, M., et al: ‘Synthesis of silver nanoparticles using seed exudates of sinapis arvensis as a novel bioresource, and evaluation of their antifungal activity’, Bioresour. Bioproc., 2015, 2, pp. 19.
    19. 19)
      • 30. Talekar, S., Joshi, G., Chougle, R., et al: ‘Preparation of stable cross-linked enzyme aggregates (CLEAs) of NADH-dependent nitrate reductase and its use for silver nanoparticle synthesis from silver nitrate’, Catal. Commun., 2014, 53, pp. 6266.
    20. 20)
      • 46. Zaki, S., El-Kady, M.F., Abd-El-Haleem, D.: ‘Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates’, Mater. Res. Bull., 2011, 46, pp. 15711576.
    21. 21)
      • 22. Lateef, A., Ojo, S.A., Elegbede, J.A.: ‘The emerging roles of arthropods and their metabolites in the green synthesis of metallic nanoparticles’, Nanotechnol. Rev., 2016, 5, pp. 601622.
    22. 22)
      • 50. Kumari, M.M., Jacob, J., Philip, D.: ‘Green synthesis and applications of Au-Ag bimetallic nanoparticles’, Spectrochim. Acta A, Mol. Biomol. Spectr., 2015, 137, pp. 185192.
    23. 23)
      • 64. Silva, A.K.A., Letourneur, D., Chauvierre, C.: ‘Polysaccharide nanosystems for future progress in cardiovascular pathologies’, Theranostics, 2014, 4, pp. 576591.
    24. 24)
      • 9. Lateef, A., Azeez, M.A., Asafa, T.B., et al: ‘Biogenic synthesis of silver nanoparticles using a pod extract of cola nitida: antibacterial, antioxidant activities and application as a paint additive’, J. Taibah Univ. Sci., 2016, 10, pp. 551562.
    25. 25)
      • 21. Lateef, A., Akande, M.A., Ojo, S.A., et al: ‘Paper wasp nest-mediated biosynthesis of silver nanoparticles for antimicrobial, catalytic, anticoagulant, and thrombolytic applications’, 3 Biotech., 2016, 6, p. 140.
    26. 26)
      • 58. Ojo, S.A., Lateef, A., Azeez, M.A., et al: ‘Biomedical and catalytic applications of gold and silver-gold alloy nanoparticles biosynthesized using cell-free extract of Bacillus safensis LAU 13: antifungal, dye degradation, anti-coagulant and thrombolytic activities’, IEEE Trans. NanoBiosci., 2016, 15, pp. 433442.
    27. 27)
      • 8. Lateef, A., Azeez, M.A., Asafa, T.B., et al: ‘Cola nitida-mediated biogenic synthesis of silver nanoparticles using seed and seed shell extracts and evaluation of antibacterial activities’, BioNanoSci., 2015, 5, pp. 196205.
    28. 28)
      • 49. Shankar, S., Jaiswal, L., Aparna, R.S.L., et al: ‘Synthesis, characterization, in vitro biocompatibility, and antimicrobial activity of gold, silver and gold silver alloy nanoparticles prepared from Lansium domesticum fruit peel extract’, Mater. Lett., 2014, 137, pp. 7578.
    29. 29)
      • 11. Mokhtari, M., Deneshpojouh, S., Seyedbagheri, S., et al: ‘Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumoniae: the effect of visible-light irradiation and the liquid mixing process’, Mater. Res. Bull., 2009, 44, pp. 14151421.
    30. 30)
      • 45. Thirumurugan, A., Tomy, N.A., Kumar, H.P., et al: ‘Biological synthesis of silver nanoparticles by Lantana camara leaf extracts’, Int. J. Nanomat. Biostruct., 2011, 1, pp. 2224.
    31. 31)
      • 20. Lateef, A., Ojo, S.A., Azeez, M.A., et al: ‘Cobweb as novel biomaterial for the green and eco-friendly synthesis of silver nanoparticles’, Appl. Nanosci., 2016, 6, pp. 863874.
    32. 32)
      • 26. Lateef, A., Adeeyo, A.O.: ‘Green synthesis and antibacterial activities of silver nanoparticles using extracellular laccase of Lentinus edodes’,Not. Sci. Biol., 2015, 7, pp. 405411.
    33. 33)
      • 38. Salem, W.M., Haridy, M., Sayed, W.F., et al: ‘Antibacterial activity of silver nanoparticles synthesized from latex and leaf extract of Ficus sycomorus’, Ind. Crops Prod., 2014, 62, pp. 228234.
    34. 34)
      • 13. Nazeruddin, G.M., Prasad, N.R., Prasad, S.R., et al: ‘Coriandrum sativum seed extract assisted in situ green synthesis of silver nanoparticle and its anti-microbial activity’, Ind. Crops Prod., 2014, 60, pp. 212216.
    35. 35)
      • 32. Beg, Q.K., Kapoor, M., Mahajan, L., et al: ‘Microbial xylanases and their industrial applications: a review’, Appl. Microbiol. Biotechnol., 2001, 56, pp. 326338.
    36. 36)
      • 43. Bhakya, S., Muthukrishnan, S., Sukumaran, M., et al: ‘Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity’, Appl. Nanosci., 2016, 6, pp. 755766.
    37. 37)
      • 61. Raghavan, S., Kristinsson, H.G., Leeuwenburgh, C.: ‘Radical scavenging and reducing ability of tilapia (oreochromis niloticus) protein hydrolysates’, J. Agric. Food Chem., 2008, 56, pp. 1035910367.
    38. 38)
      • 47. Kannan, R.R.R., Arumugam, R., Ramya, D., et al: ‘Green synthesis of silver nanoparticles using marine macroalga chaetomorpha linum’, Appl. Nanosci., 2013, 3, pp. 229233.
    39. 39)
      • 52. Netala, V.R., Kotakadi, V.S., Domdi, L., et al: ‘Biogenic silver nanoparticles: efficient and effective antifungal agents’, Appl. Nanosci., 2016, 6, pp. 475484.
    40. 40)
      • 59. Gulcin, I., Elmastas, M., Aboul-Enein, H.Y.: ‘Determination of antioxidant and radical scavenging activity of Basil (Ocimum basilicum L. Family Lamiaceae) assayed by different methodologies’, Phytother. Res., 2007, 21, pp. 354361.
    41. 41)
      • 33. Harris, A.D., Ramalingam, C.: ‘Xylanase and its application in food industry: a review’, J. Exp. Sci., 2010, 1, pp. 111.
    42. 42)
      • 16. Shanmugam, C., Sivasubramanian, G., Parthasarathi, B., et al: ‘Antimicrobial, free radical scavenging activities and catalytic oxidation of benzyl alcohol by nano-silver synthesized from the leaf extract of Aristolochia indica L.: a promenade towards sustainability’, Appl. Nanosci., 2016, 6, pp. 711723.
    43. 43)
      • 51. Rout, Y., Behera, S., Ojha, A.K., et al: ‘Green synthesis of silver nanoparticles using Ocimum sanctum (Tulashi) and study of their antibacterial and antifungal activities’, J. Microbiol. Antimicrob., 2012, 4, pp. 103109.
    44. 44)
      • 10. Lateef, A., Azeez, M.A., Asafa, T.B., et al: ‘Cocoa pod husk extract-mediated biosynthesis of silver nanoparticles: its antimicrobial, antioxidant and larvicidal activities’, J. Nanostruct. Chem., 2016, 6, pp. 159169.
    45. 45)
      • 24. Mishra, A, Sardar, M.: ‘Alpha-amylase mediated synthesis of silver nanoparticles’, Sci. Adv. Mater., 2012, 4, pp. 143146.
    46. 46)
      • 15. Lateef, A., Akande, M.A., Azeez, M.A., et al: ‘Phytosynthesis of silver nanoparticles (AgNPs) using miracle fruit plant (synsepalum dulcificum) for antimicrobial, catalytic, anticoagulant, and thrombolytic applications’, Nanotechnol. Rev., 2016, 5, pp. 507520.
    47. 47)
      • 55. Bogireddy, N.K.R., Anand, K.K.H., Mandal, B.K.: ‘Gold nanoparticles-synthesis by Sterculia acuminata extract and its catalytic efficiency in alleviating different organic dyes’, J. Mol. Liq., 2015, 211, pp. 868875.
    48. 48)
      • 1. Bhat, R., Desphande, R., Ganachari, S.V., et al: ‘Photo-irradiated bio-synthesis of silver nanoparticles using edible mushroom Pleurotus florida and their antibacterial activity studies’, Bioinorg. Chem. Appl., 2011, pp. 17, doi:10.1155/2011/650979 Article ID 650979.
    49. 49)
      • 19. Oladipo, I.C., Lateef, A., Azeez, M.A., et al: ‘Green synthesis and antimicrobial activities of silver nanoparticles using cell-free extracts of Enterococcus species’, Not. Sci. Biol., 2017, 9, pp. 196203.
    50. 50)
      • 25. Durán, N., Cuevas, R., Cordi, L., et al: ‘Biogenic silver nanoparticles associated with silver chloride nanoparticles (Ag@AgCl) produced by laccase from Trametes versicolor, SpringerPlus, 2014, 3, p. 645.
    51. 51)
      • 29. Lateef, A., Adelere, I.A., Gueguim-Kana, E.B., et al: ‘Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13’, Int. Nano Lett., 2015, 5, pp. 2935.
    52. 52)
      • 54. Sengan, M., Veeramuthu, D., Veerappan, A.: ‘Photosynthesis of silver nanoparticles using Durio zibethinus aqueous extract and its application in catalytic reduction of nitroaromatics, degradation of hazardous dyes and selective colorimetric sensing of mercury ions’, Mater. Res. Bull., 2018, 100, pp. 386393.
    53. 53)
      • 27. Lateef, A., Adelere, I.A., Gueguim-Kana, E.B.: ‘Bacillus safensis LAU 13: a new source of keratinase and its multi-functional biocatalytic applications’, Biotechnol. Biotechnol. Equip., 2015, 29, pp. 5463.
    54. 54)
      • 65. Ilinskaya, A.N., Dobrovolskaia, M.A.: ‘Nanoparticles and the blood coagulation system. Part I: benefits of nanotechnology’, Nanomedicine (Lond.), 2013, 8, pp. 773784.
    55. 55)
      • 18. Lateef, A., Ojo, S.A., Oladejo, S.M.: ‘Anti-candida, anti-coagulant and thrombolytic activities of biosynthesized silver nanoparticles using cell-free extract of Bacillus safensis LAU 13’, Process Biochem., 2016, 51, pp. 14061412.
    56. 56)
      • 31. Rai, T., Panda, D.: ‘An extracellular enzyme synthesizes narrow-sized silver nanoparticles in both water and methanol’, Chem. Phys. Lett., 2015, 623, pp. 108112.
    57. 57)
      • 63. Singh, P., Kim, Y.J., Yang, D.C.: ‘A strategic approach for rapid synthesis of gold and silver nanoparticles by panax ginseng leaves’, Artif. Cells Nanomed. Biotechnol., 2015, 44, pp. 19491957.
    58. 58)
      • 5. Shailesh, C.K., Tessy, J., Kokila, A.P.: ‘A review: fabrication of biogenic silver nanoparticles and applications’, J. Chem. Biol. Phys. Sci., 2016, 6, pp. 9971009.
    59. 59)
      • 3. Prabhu, S., Poulose, E.K.: ‘Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects’, Int. Nano Lett., 2012, 2, p. 32.
    60. 60)
      • 60. Chang, H.F., Yang, L.L.: ‘Radical-scavenging and rat liver mitochondria lipid peroxidative inhibitory effects of natural flavonoids from traditional medicinal herbs’, J. Med. Plants Res., 2012, 6, pp. 9971006.
    61. 61)
      • 41. Williams, B.W., Cuverlier, M.E., Berset, C.: ‘Use of free radical method to evaluate antioxidant activity’, Food Sci. Technol. LWT, 1995, 28, pp. 2530.
    62. 62)
      • 7. Harish, B.S., Uppuluri, K.B., Anbazhagan, V.: ‘Synthesis of fibrinolytic active nanoparticles using wheat bran xylan as a reducing and stabilizing agent’, Carbohydr. Polymer, 2015, 132, pp. 104110.
    63. 63)
      • 14. Azeez, M.A., Lateef, A., Asafa, T.B., et al: ‘Biomedical applications of cocoa bean extract-mediated silver nanoparticles as antimicrobial, larvicidal and anticoagulant agents’, J. Clust. Sci., 2017, 28, pp. 149164.
    64. 64)
      • 35. Elegbede, J.A., Lateef, A.: ‘Valorization of corn-cob by fungal isolates for production of xylanase in submerged and solid state fermentation media and potential biotechnological applications’, Waste Biomass Valor., 2017, DOI 10.1007/s12649-017-9932-y.
    65. 65)
      • 12. Samadi, N., Golkaran, D., Eslamifar, A., et al: ‘Intra/extracellular biosynthesis of silver nanoparticles by an autochtonous strain of Proteus mirabilis isolated from photographic waste’, J. Biomed. Nanotechnol., 2009, 5, pp. 247253.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0299
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0299
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading